mirror of https://github.com/hpcaitech/ColossalAI
66 lines
2.0 KiB
Python
66 lines
2.0 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
from functools import partial
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.initialize import launch
|
|
from colossalai.logging import disable_existing_loggers
|
|
from colossalai.utils import free_port
|
|
|
|
from checks_2d.check_layer_2d import (check_classifier_given_embed_weight, check_classifier_no_given_weight,
|
|
check_embed, check_layernorm, check_linear, check_loss, check_patch_embed,
|
|
check_vocab_parallel_classifier_given_embed_weight,
|
|
check_vocab_parallel_classifier_no_given_weight, check_vocab_parallel_embed,
|
|
check_vocab_parallel_loss)
|
|
from checks_2d.check_operation_2d import check_AB, check_ABT, check_ATB
|
|
|
|
CONFIG = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=4, mode='2d')), )
|
|
|
|
|
|
def check_operations():
|
|
check_AB()
|
|
check_ABT()
|
|
check_ATB()
|
|
|
|
|
|
def check_layer():
|
|
check_linear()
|
|
check_layernorm()
|
|
check_embed()
|
|
check_patch_embed()
|
|
check_vocab_parallel_embed()
|
|
check_classifier_no_given_weight()
|
|
check_vocab_parallel_classifier_no_given_weight()
|
|
check_classifier_given_embed_weight()
|
|
check_vocab_parallel_classifier_given_embed_weight()
|
|
check_loss()
|
|
check_vocab_parallel_loss()
|
|
|
|
|
|
def check_layer_and_operation(rank, world_size, port):
|
|
disable_existing_loggers()
|
|
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
torch.backends.cudnn.allow_tf32 = False
|
|
torch.backends.cudnn.deterministic = True
|
|
# check_operations()
|
|
check_layer()
|
|
gpc.destroy()
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
@pytest.mark.dist
|
|
def test_2d():
|
|
world_size = 4
|
|
run_func = partial(check_layer_and_operation, world_size=world_size, port=free_port())
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_2d()
|