mirror of https://github.com/hpcaitech/ColossalAI
200 lines
7.9 KiB
Python
200 lines
7.9 KiB
Python
import math
|
|
import torch
|
|
import torch.nn as nn
|
|
from colossalai.context import ParallelMode
|
|
from colossalai.nn.layer import VanillaPatchEmbedding, VanillaClassifier, \
|
|
WrappedDropout as Dropout, WrappedDropPath as DropPath
|
|
from colossalai.nn.layer.moe import build_ffn_experts, MoeLayer, Top2Router, NormalNoiseGenerator
|
|
from .util import moe_sa_args, moe_mlp_args
|
|
from ..helper import TransformerLayer
|
|
from colossalai.global_variables import moe_env
|
|
from colossalai.utils import get_current_device
|
|
|
|
|
|
class VanillaSelfAttention(nn.Module):
|
|
"""Standard ViT self attention.
|
|
"""
|
|
|
|
def __init__(self,
|
|
d_model: int,
|
|
n_heads: int,
|
|
d_kv: int,
|
|
attention_drop: float = 0,
|
|
drop_rate: float = 0,
|
|
bias: bool = True,
|
|
dropout1=None,
|
|
dropout2=None):
|
|
super().__init__()
|
|
self.n_heads = n_heads
|
|
self.d_kv = d_kv
|
|
self.scale = 1.0 / math.sqrt(self.d_kv)
|
|
|
|
self.dense1 = nn.Linear(d_model, 3 * n_heads * d_kv, bias, device=get_current_device())
|
|
self.softmax = nn.Softmax(dim=-1)
|
|
self.atten_drop = nn.Dropout(attention_drop) if dropout1 is None else dropout1
|
|
self.dense2 = nn.Linear(n_heads * d_kv, d_model, device=get_current_device())
|
|
self.dropout = nn.Dropout(drop_rate) if dropout2 is None else dropout2
|
|
|
|
def forward(self, x):
|
|
qkv = self.dense1(x)
|
|
new_shape = qkv.shape[:2] + (3, self.n_heads, self.d_kv)
|
|
qkv = qkv.view(*new_shape)
|
|
qkv = qkv.permute(2, 0, 3, 1, 4)
|
|
q, k, v = qkv[:]
|
|
|
|
x = torch.matmul(q, k.transpose(-2, -1)) * self.scale
|
|
x = self.atten_drop(self.softmax(x))
|
|
|
|
x = torch.matmul(x, v)
|
|
x = x.transpose(1, 2)
|
|
new_shape = x.shape[:2] + (self.n_heads * self.d_kv,)
|
|
x = x.reshape(*new_shape)
|
|
x = self.dense2(x)
|
|
x = self.dropout(x)
|
|
|
|
return x
|
|
|
|
|
|
class VanillaFFN(nn.Module):
|
|
"""FFN composed with two linear layers, also called MLP.
|
|
"""
|
|
|
|
def __init__(self,
|
|
d_model: int,
|
|
d_ff: int,
|
|
activation=None,
|
|
drop_rate: float = 0,
|
|
bias: bool = True,
|
|
dropout1=None,
|
|
dropout2=None):
|
|
super().__init__()
|
|
dense1 = nn.Linear(d_model, d_ff, bias, device=get_current_device())
|
|
act = nn.GELU() if activation is None else activation
|
|
dense2 = nn.Linear(d_ff, d_model, bias, device=get_current_device())
|
|
drop1 = nn.Dropout(drop_rate) if dropout1 is None else dropout1
|
|
drop2 = nn.Dropout(drop_rate) if dropout2 is None else dropout2
|
|
|
|
self.ffn = nn.Sequential(dense1, act, drop1, dense2, drop2)
|
|
|
|
def forward(self, x):
|
|
return self.ffn(x)
|
|
|
|
|
|
class Widenet(nn.Module):
|
|
|
|
def __init__(self,
|
|
num_experts: int,
|
|
capacity_factor: float,
|
|
img_size: int = 224,
|
|
patch_size: int = 16,
|
|
in_chans: int = 3,
|
|
num_classes: int = 1000,
|
|
depth: int = 12,
|
|
d_model: int = 768,
|
|
num_heads: int = 12,
|
|
d_kv: int = 64,
|
|
d_ff: int = 4096,
|
|
attention_drop: float = 0.,
|
|
drop_rate: float = 0.1,
|
|
drop_path: float = 0.):
|
|
super().__init__()
|
|
|
|
embedding = VanillaPatchEmbedding(img_size=img_size,
|
|
patch_size=patch_size,
|
|
in_chans=in_chans,
|
|
embed_size=d_model)
|
|
embed_dropout = Dropout(p=drop_rate, mode=ParallelMode.TENSOR)
|
|
|
|
shared_sa = VanillaSelfAttention(**moe_sa_args(
|
|
d_model=d_model, n_heads=num_heads, d_kv=d_kv, attention_drop=attention_drop, drop_rate=drop_rate))
|
|
|
|
noisy_func = NormalNoiseGenerator(num_experts)
|
|
shared_router = Top2Router(capacity_factor, noisy_func=noisy_func)
|
|
shared_experts = build_ffn_experts(num_experts, d_model, d_ff, drop_rate=drop_rate)
|
|
|
|
# stochastic depth decay rule
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path, depth)]
|
|
blocks = [
|
|
TransformerLayer(att=shared_sa,
|
|
ffn=MoeLayer(dim_model=d_model,
|
|
num_experts=num_experts,
|
|
router=shared_router,
|
|
experts=shared_experts),
|
|
norm1=nn.LayerNorm(d_model, eps=1e-6),
|
|
norm2=nn.LayerNorm(d_model, eps=1e-6),
|
|
droppath=DropPath(p=dpr[i], mode=ParallelMode.TENSOR)) for i in range(depth)
|
|
]
|
|
norm = nn.LayerNorm(d_model, eps=1e-6)
|
|
self.linear = VanillaClassifier(in_features=d_model, num_classes=num_classes)
|
|
nn.init.zeros_(self.linear.weight)
|
|
nn.init.zeros_(self.linear.bias)
|
|
self.widenet = nn.Sequential(embedding, embed_dropout, *blocks, norm)
|
|
|
|
def forward(self, x):
|
|
moe_env.reset_loss()
|
|
x = self.widenet(x)
|
|
x = torch.mean(x, dim=1)
|
|
x = self.linear(x)
|
|
return x
|
|
|
|
|
|
class ViTMoE(nn.Module):
|
|
|
|
def __init__(self,
|
|
num_experts: int,
|
|
capacity_factor: float,
|
|
img_size: int = 224,
|
|
patch_size: int = 16,
|
|
in_chans: int = 3,
|
|
num_classes: int = 1000,
|
|
depth: int = 12,
|
|
d_model: int = 768,
|
|
num_heads: int = 12,
|
|
d_kv: int = 64,
|
|
d_ff: int = 3072,
|
|
attention_drop: float = 0.,
|
|
drop_rate: float = 0.1,
|
|
drop_path: float = 0.):
|
|
super().__init__()
|
|
|
|
embedding = VanillaPatchEmbedding(img_size=img_size,
|
|
patch_size=patch_size,
|
|
in_chans=in_chans,
|
|
embed_size=d_model)
|
|
embed_dropout = Dropout(p=drop_rate, mode=ParallelMode.TENSOR)
|
|
|
|
noisy_func = NormalNoiseGenerator(num_experts)
|
|
router = Top2Router(capacity_factor, noisy_func=noisy_func)
|
|
|
|
assert depth % 2 == 0
|
|
|
|
# stochastic depth decay rule
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path, depth)]
|
|
blocks = []
|
|
for i in range(depth):
|
|
sa = VanillaSelfAttention(**moe_sa_args(
|
|
d_model=d_model, n_heads=num_heads, d_kv=d_kv, attention_drop=attention_drop, drop_rate=drop_rate))
|
|
ffn = VanillaFFN(**moe_mlp_args(
|
|
d_model=d_model, d_ff=d_ff, drop_rate=drop_rate)) if i % 2 == 0 else \
|
|
MoeLayer(dim_model=d_model, num_experts=num_experts, router=router,
|
|
experts=build_ffn_experts(num_experts, d_model, d_ff, drop_rate=drop_rate))
|
|
layer = TransformerLayer(att=sa,
|
|
ffn=ffn,
|
|
norm1=nn.LayerNorm(d_model, eps=1e-6),
|
|
norm2=nn.LayerNorm(d_model, eps=1e-6),
|
|
droppath=DropPath(p=dpr[i], mode=ParallelMode.TENSOR))
|
|
blocks.append(layer)
|
|
|
|
norm = nn.LayerNorm(d_model, eps=1e-6)
|
|
self.linear = VanillaClassifier(in_features=d_model, num_classes=num_classes)
|
|
nn.init.zeros_(self.linear.weight)
|
|
nn.init.zeros_(self.linear.bias)
|
|
self.vitmoe = nn.Sequential(embedding, embed_dropout, *blocks, norm)
|
|
|
|
def forward(self, x):
|
|
moe_env.reset_loss()
|
|
x = self.vitmoe(x)
|
|
x = torch.mean(x, dim=1)
|
|
x = self.linear(x)
|
|
return x
|