ColossalAI/colossalai/context/parallel_context.py

520 lines
22 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import random
from typing import Union
import numpy as np
import torch
import torch.distributed as dist
from colossalai.constants import ALLOWED_MODES, INITIALIZER_MAPPING
from colossalai.context.config import Config
from colossalai.global_variables import moe_env
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.logging import get_dist_logger
from colossalai.registry import DIST_GROUP_INITIALIZER
from .parallel_mode import ParallelMode
from .random import add_seed, get_seeds, set_mode
class ParallelContext:
"""This class provides interface functions for users to get the parallel context,
such as the global rank, the local rank, the world size, etc. of each device.
"""
__instance = None
@staticmethod
def get_instance():
if ParallelContext.__instance is None:
ParallelContext()
return ParallelContext.__instance
def __init__(self):
# create a singleton instance
if ParallelContext.__instance is not None:
raise Exception(
'ParallelContext is a singleton class, you should get the instance by colossalai.core.global_context')
else:
ParallelContext.__instance = self
# distributed settings
self._global_ranks = dict()
self._local_ranks = dict()
self._world_sizes = dict()
self._groups = dict()
self._ranks_in_group = dict()
# load config from file
self._config = None
# default 3D parallel args, will be overwritten during process group intialization
self.world_size = 1
self.data_parallel_size = 1
self.pipeline_parallel_size = 1
self.tensor_parallel_size = 1
self.virtual_pipeline_parallel_size = None
self.virtual_pipeline_parallel_rank = None
# logging
self._verbose = False
self._logger = get_dist_logger()
@property
def config(self):
return self._config
@property
def verbose(self):
return self._verbose
@verbose.setter
def verbose(self, verbose_: bool):
self._verbose = verbose_
def load_config(self, config: Union[dict, str]):
"""Loads the configuration from either a dict or a file.
:param config: Either a dict containing the configuration information or the filename
of a file containing the configuration information
:type config: dict or str
:raises TypeError: Raises a TypeError if `config` is neither a dict or a str
"""
if isinstance(config, str):
self._config = Config.from_file(config)
elif isinstance(config, dict):
self._config = Config(config)
else:
raise TypeError("Invalid type for config, only dictionary or string is supported")
@staticmethod
def _check_parallel_mode(parallel_mode: ParallelMode):
assert isinstance(parallel_mode, ParallelMode)
def get_global_rank(self):
"""Returns the global rank of the current device.
:return: The global rank of the current device
:rtype: int
"""
return self._global_ranks[ParallelMode.GLOBAL]
def add_global_rank(self, parallel_mode: ParallelMode, rank: int):
"""Adds the global rank of the current device for `parallel_mode` to the context.
:param parallel_mode: The parallel mode for the rank
:type parallel_mode: :class:`colossalai.context.ParallelMode`
:param rank: The rank to be added
:type rank: int
:raises AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`
"""
self._check_parallel_mode(parallel_mode)
self._global_ranks[parallel_mode] = rank
def get_local_rank(self, parallel_mode: ParallelMode):
"""Returns the local rank of the current device.
:param parallel_mode: The chosen parallel mode
:type parallel_mode: :class:`colossalai.context.ParallelMode`
:raises AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`
:return: The local rank of the current device for `parallel_mode`
:rtype: int
"""
self._check_parallel_mode(parallel_mode)
return self._local_ranks[parallel_mode]
def add_local_rank(self, parallel_mode: ParallelMode, rank: int):
"""Adds the local rank of the current device for `parallel_mode` to the context.
:param parallel_mode: The parallel mode for the rank
:type parallel_mode: :class:`colossalai.context.ParallelMode`
:param rank: The rank to be added
:type rank: int
:raises AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`
"""
self._check_parallel_mode(parallel_mode)
self._local_ranks[parallel_mode] = rank
def get_next_global_rank(self, parallel_mode: ParallelMode):
"""Returns the global rank of the next device.
:param parallel_mode: The chosen parallel mode
:type parallel_mode: :class:`colossalai.context.ParallelMode`
:raises AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`
:return: The global rank of the next device for `parallel_mode`
:rtype: int
"""
self._check_parallel_mode(parallel_mode)
# get rank and world size
local_rank = self.get_local_rank(parallel_mode)
world_size = self.get_world_size(parallel_mode)
ranks_in_group = self.get_ranks_in_group(parallel_mode)
return ranks_in_group[(local_rank + 1) % world_size]
def get_prev_global_rank(self, parallel_mode: ParallelMode):
"""Returns the global rank of the previous device.
:param parallel_mode: The chosen parallel mode
:type parallel_mode: :class:`colossalai.context.ParallelMode`
:raises AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`
:return: The global rank of the previous device for `parallel_mode`
:rtype: int
"""
self._check_parallel_mode(parallel_mode)
# get rank and world size
local_rank = self.get_local_rank(parallel_mode)
world_size = self.get_world_size(parallel_mode)
ranks_in_group = self.get_ranks_in_group(parallel_mode)
return ranks_in_group[(local_rank - 1) % world_size]
def is_first_rank(self, parallel_mode: ParallelMode):
"""Returns a boolean value indicating whether the current device is the first one
among its group for `parallel_mode`.
:param parallel_mode: The chosen parallel mode
:type parallel_mode: :class:`colossalai.context.ParallelMode`
:raises AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`
:return: a boolean value indicating whether the current device is the first one
among its group for `parallel_mode`
:rtype: bool
"""
rank = self.get_local_rank(parallel_mode)
return rank == 0
def is_last_rank(self, parallel_mode: ParallelMode):
"""Returns a boolean value indicating whether the current device is the last one
among its group for `parallel_mode`.
:param parallel_mode: The chosen parallel mode
:type parallel_mode: :class:`colossalai.context.ParallelMode`
:raises AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`
:return: a boolean value indicating whether the current device is the last one
among its group for `parallel_mode`
:rtype: bool
"""
rank = self.get_local_rank(parallel_mode)
world_size = self.get_world_size(parallel_mode)
return rank == world_size - 1
def is_pipeline_first_stage(self, ignore_virtual=False):
if not ignore_virtual:
if self.virtual_pipeline_parallel_size is not None and self.virtual_pipeline_parallel_rank != 0:
return False
return self.is_first_rank(ParallelMode.PIPELINE)
def is_pipeline_last_stage(self, ignore_virtual=False):
if not ignore_virtual:
if self.virtual_pipeline_parallel_size \
is not None and self.virtual_pipeline_parallel_rank != self.virtual_pipeline_parallel_size - 1:
return False
return self.is_last_rank(ParallelMode.PIPELINE)
def get_world_size(self, parallel_mode: ParallelMode):
"""Returns the world size for `parallel_mode`.
:param parallel_mode: The chosen parallel mode
:type parallel_mode: :class:`colossalai.context.ParallelMode`
:raises AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`
:return: The world size for `parallel_mode`
:rtype: int
"""
self._check_parallel_mode(parallel_mode)
return self._world_sizes[parallel_mode]
def add_world_size(self, parallel_mode: ParallelMode, world_size: int):
"""Adds world size for `parallel_mode`.
:param parallel_mode: The chosen parallel mode
:type parallel_mode: :class:`colossalai.context.ParallelMode`
:param world_size: The world size to be added
:type world_size: int
:raises AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`
"""
self._check_parallel_mode(parallel_mode)
self._world_sizes[parallel_mode] = world_size
def get_group(self, parallel_mode: ParallelMode):
"""Returns the group of the current device for `parallel_mode`.
:param parallel_mode: The chosen parallel mode
:type parallel_mode: :class:`colossalai.context.ParallelMode`
:raises AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`
:return: The group of the current device for `parallel_mode`
:rtype: torch.distributed.ProcessGroup
"""
self._check_parallel_mode(parallel_mode)
return self._groups[parallel_mode]
def add_group(self, parallel_mode: ParallelMode, group: dist.ProcessGroup):
"""Adds the group of the current device for `parallel_mode`.
:param parallel_mode: The chosen parallel mode
:type parallel_mode: :class:`colossalai.context.ParallelMode`
:param group: The group to be added
:type group: torch.distributed.ProcessGroup
:raises AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`
"""
self._check_parallel_mode(parallel_mode)
self._groups[parallel_mode] = group
def get_ranks_in_group(self, parallel_mode: ParallelMode):
"""Returns the rank of the current device for `parallel_mode` in the group.
:param parallel_mode: The chosen parallel mode
:type parallel_mode: :class:`colossalai.context.ParallelMode`
:raises AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`
:return: the rank of the current device for `parallel_mode` in the group
:rtype: int
"""
self._check_parallel_mode(parallel_mode)
return self._ranks_in_group[parallel_mode]
def add_ranks_in_group(self, parallel_mode: ParallelMode, ranks: list):
"""Adds the ranks of the current device for `parallel_mode` in the group.
:param parallel_mode: The chosen parallel mode
:type parallel_mode: :class:`colossalai.context.ParallelMode`
:param ranks: List of ranks to be added
:type ranks: list
:raises AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`
"""
self._check_parallel_mode(parallel_mode)
self._ranks_in_group[parallel_mode] = ranks
def init_global_dist(self, rank: int, world_size: int, backend: str, host: str, port: int):
"""Initializes the global distributed environment
:param rank: rank for the default process group
:type rank: int
:param world_size: world size of the default process group
:type world_size: int
:param host: the master address for distributed training
:type host: str
:param port: the master port for distributed training
:type port: str
:param backend: backend for torch.distributed
:type backend: str
"""
# initialize the default process group
init_method = f'tcp://{host}:{port}'
dist.init_process_group(rank=rank, world_size=world_size, backend=backend, init_method=init_method)
# None will give the default global process group for pytorch dist operations
self._register_dist(rank, world_size, None, list(range(world_size)), ParallelMode.GLOBAL)
self.add_global_rank(ParallelMode.GLOBAL, rank)
def _register_dist(self, local_rank, world_size, process_group, ranks_in_group, mode):
self.add_local_rank(mode, local_rank)
self.add_world_size(mode, world_size)
self.add_group(mode, process_group)
self.add_ranks_in_group(mode, ranks_in_group)
def check_sanity(self):
"""Checks sanity of the parallel context.
:raises AssertionError: Raises an AssertionError if the world size does not equal to the product
of data paralle size, pipeline parallel size and tensor parallel size
"""
dps = self.data_parallel_size
pps = self.pipeline_parallel_size
tps = self.tensor_parallel_size
ws = self.world_size
assert ws == dps * pps * \
tps, f"Expected the world size {ws} to be equal to data" \
f" parallel size ({dps}) * pipeline parallel size " \
f"({pps}) * tensor parallel size ({tps})"
def _set_parallel_size_from_config(self, config: dict, key: str, attr_name: str):
if key in config:
ele = config[key]
if isinstance(ele, int):
setattr(self, attr_name, ele)
elif isinstance(ele, dict):
setattr(self, attr_name, ele['size'])
else:
raise NotImplementedError(
f'{"Parallel configuration does not support this kind of argument, please use int or dict"}')
def init_parallel_groups(self):
"""Initializes the parallel groups.
:raises AssertionError: Raises an AssertionError if the field paralle is not present in the config file
"""
# get rank and world size
rank = self.get_global_rank()
world_size = self.get_world_size(ParallelMode.GLOBAL)
self.world_size = world_size
# set parallel size as attributes for global context
parallel_config = self.config.get('parallel', None)
if parallel_config is not None:
self._set_parallel_size_from_config(parallel_config, 'pipeline', 'pipeline_parallel_size')
self._set_parallel_size_from_config(parallel_config, 'tensor', 'tensor_parallel_size')
# the user should not set the data parallel size manually
# instead, it should be calculated based on other parallel config
self.data_parallel_size = self.world_size // (self.pipeline_parallel_size * self.tensor_parallel_size)
# get the tensor parallel mode and check
tensor_parallel_mode = None
if parallel_config is not None and 'tensor' in \
parallel_config and 'mode' in parallel_config['tensor']:
tensor_parallel_mode = parallel_config['tensor']['mode']
assert tensor_parallel_mode in ALLOWED_MODES, \
f"mode in the parallel config must be set to one of {ALLOWED_MODES}"
env.mode = tensor_parallel_mode
self.check_sanity()
pg_init = []
# LSG: init data parallel process group for compatibility with other parallel module such as zero
pg_init.append(dict(type=INITIALIZER_MAPPING['data']))
# LSG: init model parallel process group for compatibility with amp and clip grad
pg_init.append(dict(type=INITIALIZER_MAPPING['model']))
if self.pipeline_parallel_size > 1:
pg_init.append(dict(type=INITIALIZER_MAPPING['pipeline']))
pg_init.append(dict(type=INITIALIZER_MAPPING['tensor']))
# init specific tensor parallel group
if tensor_parallel_mode is not None:
tensor_parallel_cfg = parallel_config['tensor'].copy()
# remove duplicate parameters
tensor_parallel_cfg.pop('mode')
tensor_parallel_cfg.pop('size')
# add this config to initialize later
pg_init.append(dict(type=INITIALIZER_MAPPING[tensor_parallel_mode.lower()], **tensor_parallel_cfg))
# initialization for moe environment
if parallel_config is not None and 'moe' in parallel_config:
param = parallel_config['moe']
assert 'size' in param, "Moe model parallel size should be given"
moe_env.setup(param['size'])
pg_init.append(dict(type=INITIALIZER_MAPPING['moe']))
# run initialization of different process groups
for initializer_cfg in pg_init:
cfg = initializer_cfg.copy()
initializer_type = cfg.pop('type')
initializer = DIST_GROUP_INITIALIZER.get_module(initializer_type)(rank, world_size, self.config,
self.data_parallel_size,
self.pipeline_parallel_size,
self.tensor_parallel_size, **cfg)
parallel_setting = initializer.init_dist_group()
if isinstance(parallel_setting, list):
for args in parallel_setting:
self._register_dist(*args)
else:
self._register_dist(*parallel_setting)
def is_initialized(self, parallel_mode: ParallelMode):
"""Returns a boolean value indicating whether `parallel_mode` is initialized
in the current system.
:param parallel_mode: The chosen parallel mode
:type parallel_mode: :class:`colossalai.context.ParallelMode`
:return: a boolean value indicating whether `parallel_mode` is initialized
in the current system
:rtype: bool
"""
return parallel_mode in self._groups
def destroy(self):
"""Destroys the current distributed parallel environment.
"""
for mode, group in self._groups.items():
if mode is not ParallelMode.GLOBAL:
dist.destroy_process_group(group)
# destroy global process group
dist.destroy_process_group()
def set_device(self, device_ordinal: int = None):
"""Sets distributed processes to be bound to devices.
:param device_ordinal: the device id to be bound to
:type device_ordinal: int, optional
"""
global_rank = self.get_global_rank()
if device_ordinal is None:
devices_per_node = torch.cuda.device_count()
device_ordinal = global_rank % devices_per_node
torch.cuda.set_device(device_ordinal)
if self._verbose:
self._logger.info(f'process rank {global_rank} is bound to device {device_ordinal}')
def set_seed(self, seed: int):
"""Sets seeds for all random libraries.
:param seed: seed for random states
:type seed: int
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
global_rank = self.get_global_rank()
if torch.cuda.is_available():
# create random seed for different parallel modes
# data parallel seed are kept the same
parallel_seed = seed
add_seed(ParallelMode.DATA, parallel_seed)
# model parallel seeds are different across ranks
pipeline_offset = self._local_ranks.get(ParallelMode.PIPELINE, 0)
# add seed for data parallel and tensor parallel only
if self.is_initialized(ParallelMode.TENSOR):
tp_rank = self.get_local_rank(ParallelMode.TENSOR)
# 100 is only to increase the diff in seeds between pipeline stages
tp_rank_with_offset = tp_rank + pipeline_offset * 1024
tp_seed = seed + tp_rank_with_offset
add_seed(ParallelMode.TENSOR, tp_seed)
set_mode(ParallelMode.DATA)
seeds = get_seeds()
seed_str = ', '.join([f'{k}: {v}' for k, v in seeds.items()])
if self._verbose:
self._logger.info(f"initialized seed on rank {global_rank}, "
f"numpy: {seed}, python random: {seed}, {seed_str},"
f"the default parallel seed is {ParallelMode.DATA}.")
else:
if self._verbose:
self._logger.info(
f"initialized seed on rank {global_rank}, "
f"numpy: {seed}, python random: {seed}, pytorch: {seed}",
ranks=[0])
self._logger.info(
'WARNING: CUDA is not available, thus CUDA RNG cannot be used to track CUDA random number states',
ranks=[0])
def set_virtual_pipeline_parallel_size(self, size):
self.virtual_pipeline_parallel_size = size
def set_virtual_pipeline_parallel_rank(self, rank):
self.virtual_pipeline_parallel_rank = rank