mirror of https://github.com/hpcaitech/ColossalAI
36 lines
1.3 KiB
Python
36 lines
1.3 KiB
Python
import torch.nn as nn
|
|
from torch.optim import Optimizer
|
|
from torch.nn.modules.loss import _Loss
|
|
from colossalai.context import Config
|
|
from .torch_amp import TorchAMPOptimizer, TorchAMPModel, TorchAMPLoss
|
|
from typing import Optional
|
|
|
|
|
|
def convert_to_torch_amp(model: nn.Module,
|
|
optimizer: Optimizer,
|
|
criterion: Optional[_Loss] = None,
|
|
amp_config: Optional[Config] = None):
|
|
"""A helper function to wrap training components with Torch AMP modules
|
|
|
|
:param model: your model object
|
|
:type model: :class:`torch.nn.Module`
|
|
:param optimizer: your optimizer object
|
|
:type optimizer: :class:`torch.optim.Optimzer`
|
|
:param criterion: your loss function object
|
|
:type criterion: :class:`torch.nn.modules.loss._Loss`, optional
|
|
:param amp_config: configuration for different amp modes
|
|
:type amp_config: :class:`colossalai.context.Config` or dict, optional
|
|
:return: (model, optimizer, criterion)
|
|
:rtype: Tuple
|
|
"""
|
|
model = TorchAMPModel(model)
|
|
if amp_config is None:
|
|
amp_config = dict()
|
|
optimizer = TorchAMPOptimizer(optimizer, **amp_config)
|
|
if criterion:
|
|
criterion = TorchAMPLoss(criterion)
|
|
return model, optimizer, criterion
|
|
|
|
|
|
__all__ = ['convert_to_torch_amp', 'TorchAMPModel', 'TorchAMPLoss', 'TorchAMPOptimizer']
|