mirror of https://github.com/hpcaitech/ColossalAI
1150 lines
44 KiB
Python
1150 lines
44 KiB
Python
# coding=utf-8
|
|
import concurrent.futures
|
|
import os
|
|
import re
|
|
import warnings
|
|
from collections import abc as container_abcs
|
|
from collections import defaultdict
|
|
from itertools import chain
|
|
from pathlib import Path
|
|
from typing import Dict, Generator, Iterator, List, Mapping, Optional, OrderedDict, Tuple, Union
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
from packaging.version import Version
|
|
from peft import PeftModel, PeftType
|
|
from peft.utils.other import EMBEDDING_LAYER_NAMES, check_file_exists_on_hf_hub
|
|
from peft.utils.save_and_load import get_embedding_layer_name, has_valid_embedding_base_layer
|
|
from torch.optim import Optimizer
|
|
from torch.utils._pytree import tree_flatten, tree_map, tree_unflatten
|
|
|
|
from colossalai.accelerator import get_accelerator
|
|
from colossalai.tensor.d_tensor import (
|
|
is_customized_distributed_tensor,
|
|
is_distributed_tensor,
|
|
to_global,
|
|
to_global_for_customized_distributed_tensor,
|
|
)
|
|
from colossalai.utils import get_current_device
|
|
from colossalai.utils.safetensors import _flatten_optim_state_dict, load_flat
|
|
|
|
SAFE_WEIGHTS_NAME = "model.safetensors"
|
|
WEIGHTS_NAME = "pytorch_model.bin"
|
|
STATES_NAME = "pytorch_optim.bin"
|
|
SAFE_STATE_NAME = "optimizer.safetensors"
|
|
SAFE_WEIGHTS_INDEX_NAME = "model.safetensors.index.json"
|
|
WEIGHTS_INDEX_NAME = "pytorch_model.bin.index.json"
|
|
STATES_INDEX_NAME = "pytorch_optim.bin.index.json"
|
|
SAFE_STATES_INDEX_NAME = "optimizer.safetensors.index.json"
|
|
GROUP_FILE_NAME = "pytorch_optim_group.bin"
|
|
|
|
# ======================================
|
|
# General helper functions
|
|
# ======================================
|
|
|
|
|
|
def calculate_tensor_size(tensor: torch.Tensor) -> float:
|
|
"""
|
|
Calculate the size of a parameter in MB. Used to compute whether a group of params exceed the shard size.
|
|
If so, a new shard should be created.
|
|
|
|
Args:
|
|
tensor (torch.Tensor): the tensor to calculate size for.
|
|
|
|
Returns:
|
|
float: size of the tensor in MB.
|
|
"""
|
|
return tensor.numel() * tensor.element_size() / 1024 / 1024
|
|
|
|
|
|
def is_safetensors_available() -> bool:
|
|
"""
|
|
Check whether safetensors is available.
|
|
|
|
Returns:
|
|
bool: whether safetensors is available.
|
|
"""
|
|
try:
|
|
return True
|
|
except ImportError:
|
|
return False
|
|
|
|
|
|
def is_dtensor_checkpoint(checkpoint_file_path: str) -> bool:
|
|
"""
|
|
Check whether the checkpoint file is a dtensor checkpoint.
|
|
|
|
Args:
|
|
checkpoint_file_path (str): path to the checkpoint file.
|
|
|
|
Returns:
|
|
bool: whether the checkpoint file is a dtensor checkpoint.
|
|
"""
|
|
if checkpoint_file_path.endswith(".*.safetensors") or checkpoint_file_path.endswith(".*.bin"):
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
|
|
def is_safetensor_checkpoint(checkpoint_file_path: str) -> bool:
|
|
"""
|
|
Check whether the checkpoint file is a safetensor checkpoint.
|
|
|
|
Args:
|
|
checkpoint_file_path (str): path to the checkpoint file.
|
|
|
|
Returns:
|
|
bool: whether the checkpoint file is a safetensor checkpoint.
|
|
"""
|
|
if checkpoint_file_path.endswith(".safetensors"):
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
|
|
def search_tp_partition_dim(current_shape: torch.Size, original_shape: torch.Size, tp_size: int) -> Optional[int]:
|
|
"""
|
|
Given the current shape of parameter and the shape of parameter before sharding,
|
|
return the dimension along which the parameter is sharded when using tensor parallel.
|
|
If tensor parallel is not used, return None.
|
|
|
|
Args:
|
|
current_shape (torch.Size): The current shape of parameter after sharding.
|
|
original_shape (torch.Size): The shape of parameter before sharding.
|
|
tp_size (int): The size of tp group.
|
|
|
|
Returns:
|
|
Optional[int]: The dimension along which parameter is partitioned.
|
|
"""
|
|
partition_dim = None
|
|
for dim, length in enumerate(original_shape):
|
|
if length > current_shape[dim]:
|
|
partition_dim = dim
|
|
break
|
|
if partition_dim is not None:
|
|
assert (
|
|
original_shape[partition_dim] == tp_size * current_shape[partition_dim]
|
|
), f"The parameter isn't evenly distributed among tensor parallel group: \
|
|
shape before sharding {original_shape}, shape after sharding {current_shape}"
|
|
|
|
return partition_dim
|
|
|
|
|
|
def search_padding_dim(global_shape: torch.Size, original_shape: torch.Size) -> Optional[int]:
|
|
padding_dim = None
|
|
for dim, length in enumerate(global_shape):
|
|
if length > original_shape[dim]:
|
|
padding_dim = dim
|
|
break
|
|
return padding_dim
|
|
|
|
|
|
# ======================================
|
|
# Helper classes and functions for saving shard file
|
|
# ======================================
|
|
|
|
|
|
class StateDictSharder:
|
|
def __init__(self, size_per_shard: int) -> None:
|
|
self.max_shard_size = size_per_shard
|
|
self.current_block = OrderedDict()
|
|
self.current_block_size = 0
|
|
|
|
def append_param(self, name: str, tensor: torch.Tensor) -> Tuple[Optional[OrderedDict], int]:
|
|
tensor_size = calculate_tensor_size(tensor)
|
|
ret_block = None
|
|
ret_block_size = 0
|
|
|
|
# before we return the current block and create a new block,
|
|
# we need to ensure that the current block is not empty
|
|
if self.current_block_size + tensor_size > self.max_shard_size and self.current_block_size > 0:
|
|
ret_block = self.current_block
|
|
ret_block_size = self.current_block_size
|
|
self.current_block = OrderedDict()
|
|
self.current_block_size = 0
|
|
|
|
self.current_block[name] = tensor
|
|
self.current_block_size += tensor_size
|
|
return ret_block, ret_block_size
|
|
|
|
def append_optim_state(self, param_id: int, state: OrderedDict) -> Tuple[Optional[OrderedDict], int]:
|
|
# A state might contain more than one tensors.
|
|
# e.g. each Adam state includes: 'step', 'exp_avg', 'exp_avg_sq'
|
|
state_size = 0
|
|
isDTensor = False
|
|
for state_tensor in state.values():
|
|
# When state_tensor is not of Tensor class,
|
|
# e.g., a SGD optimizer with momentum set to 0 can have None as state
|
|
# The calculation of tensor size should be skipped to avoid error.
|
|
if not isinstance(state_tensor, torch.Tensor):
|
|
continue
|
|
|
|
# If the states are stored as DTensors, mark isDTensor as true.
|
|
if is_distributed_tensor(state_tensor):
|
|
isDTensor = True
|
|
state_size += calculate_tensor_size(state_tensor)
|
|
|
|
ret_block = None
|
|
ret_block_size = 0
|
|
|
|
# directly return if state is stored as distributed tensor
|
|
if isDTensor:
|
|
return ret_block, ret_block_size
|
|
|
|
# before we return the current block and create a new block,
|
|
# we need to ensure that the current block is not empty
|
|
if self.current_block_size + state_size > self.max_shard_size and self.current_block_size > 0:
|
|
ret_block = self.current_block
|
|
ret_block_size = self.current_block_size
|
|
self.current_block = OrderedDict()
|
|
self.current_block_size = 0
|
|
|
|
self.current_block[param_id] = state
|
|
self.current_block_size += state_size
|
|
return ret_block, ret_block_size
|
|
|
|
|
|
def gather_distributed_param(param: torch.Tensor, keep_vars: bool = False) -> torch.Tensor:
|
|
"""
|
|
Gather the complete parameter for saving if passed in param is distributed under tp setting.
|
|
|
|
Args:
|
|
param (torch.Tensor): A model parameter, might be d_tensor.
|
|
keep_vars (bool, optional): Whether to return the parameter in calculation graph. Defaults to False.
|
|
|
|
Returns:
|
|
torch.Tensor: the complete parameter
|
|
"""
|
|
param_ = param if keep_vars else param.detach()
|
|
if is_distributed_tensor(param_):
|
|
return to_global(param_)
|
|
elif is_customized_distributed_tensor(param_):
|
|
return to_global_for_customized_distributed_tensor(param_)
|
|
else:
|
|
return param_
|
|
|
|
|
|
def save_state_dict_shards(
|
|
sharded_state_dict: Iterator[Tuple[OrderedDict, int]],
|
|
checkpoint: str,
|
|
index_file: "CheckpointIndexFile",
|
|
base_filename: str,
|
|
is_master: bool,
|
|
use_safetensors: bool = False,
|
|
use_pp_format: bool = False,
|
|
) -> int:
|
|
"""
|
|
Save sharded state dict only on master rank, this method can be used by both model and optimizer states.
|
|
Args:
|
|
sharded_state_dict (Iterator[Tuple[OrderedDict, int]]): a generator of shards, each shard contains state dict and shard size.
|
|
checkpoint (str): The path of checkpoint directory as string.
|
|
index_file (CheckpointIndexFile): The index file object to be updated.
|
|
base_filename (str): Decides the prefix of filenames of shards.
|
|
is_master (bool): Whether current rank is main process.
|
|
use_safetensors (bool, optional): Whether to use safetensors to save checkpoint. Defaults to False.
|
|
use_pp_format: (bool, optional): Whether to save the files in pipeline format including stage information. Defaults to False.
|
|
|
|
Returns:
|
|
int: the total size of shards
|
|
"""
|
|
|
|
total_size = 0
|
|
shard_filenames = []
|
|
for idx, shard_pair in enumerate(sharded_state_dict):
|
|
shard, current_size = shard_pair
|
|
# Just loop over the sharder and gather to other ranks if not master
|
|
if not is_master:
|
|
del shard
|
|
continue
|
|
shard_file = get_shard_filename(base_filename, idx)
|
|
total_size = total_size + current_size
|
|
for key in shard.keys():
|
|
index_file.append_weight_map(key, shard_file)
|
|
checkpoint_file_path = os.path.join(checkpoint, shard_file)
|
|
|
|
# Only save on master rank.
|
|
save_state_dict(shard, checkpoint_file_path, use_safetensors=use_safetensors)
|
|
shard_filenames.append(shard_file)
|
|
del shard
|
|
|
|
# Clean folder, deleted unneeded files.
|
|
clean_folder(checkpoint, base_filename, shard_filenames, is_master=is_master, use_pp_format=use_pp_format)
|
|
|
|
return total_size
|
|
|
|
|
|
def async_save_state_dict_shards(
|
|
sharded_state_dict: Iterator[Tuple[OrderedDict, int]],
|
|
checkpoint: str,
|
|
index_file: "CheckpointIndexFile",
|
|
base_filename: str,
|
|
is_master: bool,
|
|
use_pp_format: bool = False,
|
|
state_preprocess: bool = False,
|
|
) -> Tuple[int, list]:
|
|
"""
|
|
Save sharded state dict only on master rank, this method can be used by both model and optimizer states.
|
|
Args:
|
|
sharded_state_dict (Iterator[Tuple[OrderedDict, int]]): a generator of shards, each shard contains state dict and shard size.
|
|
checkpoint (str): The path of checkpoint directory as string.
|
|
index_file (CheckpointIndexFile): The index file object to be updated.
|
|
base_filename (str): Decides the prefix of filenames of shards.
|
|
is_master (bool): Whether current rank is main process.
|
|
use_safetensors (bool, optional): Whether to use safetensors to save checkpoint. Defaults to False.
|
|
use_pp_format: (bool, optional): Whether to save the files in pipeline format including stage information. Defaults to False.
|
|
|
|
Returns:
|
|
int: the total size of shards
|
|
"""
|
|
from colossalai.utils.safetensors import save
|
|
|
|
total_size = 0
|
|
shard_filenames = []
|
|
writers = []
|
|
for idx, shard_pair in enumerate(sharded_state_dict):
|
|
shard, current_size = shard_pair
|
|
# Just loop over the sharder and gather to other ranks if not master
|
|
if not is_master:
|
|
del shard
|
|
continue
|
|
shard_file = get_shard_filename(base_filename, idx)
|
|
total_size = total_size + current_size
|
|
for key in shard.keys():
|
|
index_file.append_weight_map(key, shard_file)
|
|
checkpoint_file_path = os.path.join(checkpoint, shard_file)
|
|
|
|
if state_preprocess:
|
|
state_dict, metadata = _flatten_optim_state_dict(state_dict=shard, seperator=".")
|
|
else:
|
|
state_dict = shard
|
|
metadata = None
|
|
|
|
# Only save on master rank.
|
|
writer = save(checkpoint_file_path, state_dict=state_dict, metadata=metadata)
|
|
writers.append(writer)
|
|
shard_filenames.append(shard_file)
|
|
del shard
|
|
|
|
# Clean folder, deleted unneeded files.
|
|
clean_folder(checkpoint, base_filename, shard_filenames, is_master=is_master, use_pp_format=use_pp_format)
|
|
|
|
return total_size, writers
|
|
|
|
|
|
def async_move_save_state_dict_shards(
|
|
sharded_state_dict: Iterator[Tuple[OrderedDict, int]],
|
|
checkpoint: str,
|
|
index_file: "CheckpointIndexFile",
|
|
base_filename: str,
|
|
is_master: bool,
|
|
pinned_state_dict: Optional[Dict[str, torch.Tensor]],
|
|
use_pp_format: bool = False,
|
|
state_preprocess: bool = False,
|
|
) -> Tuple[int, Dict[str, torch.Tensor], list]:
|
|
"""
|
|
Save sharded state dict only on master rank, this method can be used by both model and optimizer states.
|
|
Args:
|
|
sharded_state_dict (Iterator[Tuple[OrderedDict, int]]): a generator of shards, each shard contains state dict and shard size.
|
|
checkpoint (str): The path of checkpoint directory as string.
|
|
index_file (CheckpointIndexFile): The index file object to be updated.
|
|
base_filename (str): Decides the prefix of filenames of shards.
|
|
is_master (bool): Whether current rank is main process.
|
|
use_safetensors (bool, optional): Whether to use safetensors to save checkpoint. Defaults to False.
|
|
use_pp_format: (bool, optional): Whether to save the files in pipeline format including stage information. Defaults to False.
|
|
|
|
Returns:
|
|
int: the total size of shards
|
|
"""
|
|
from colossalai.utils.safetensors import move_and_save
|
|
|
|
total_size = 0
|
|
shard_filenames = []
|
|
if pinned_state_dict is None:
|
|
returned_state_dict = {}
|
|
else:
|
|
returned_state_dict = pinned_state_dict
|
|
writers = []
|
|
for idx, shard_pair in enumerate(sharded_state_dict):
|
|
shard, current_size = shard_pair
|
|
# Just loop over the sharder and gather to other ranks if not master
|
|
if not is_master:
|
|
del shard
|
|
continue
|
|
shard_file = get_shard_filename(base_filename, idx)
|
|
total_size = total_size + current_size
|
|
for key in shard.keys():
|
|
index_file.append_weight_map(key, shard_file)
|
|
checkpoint_file_path = os.path.join(checkpoint, shard_file)
|
|
|
|
if state_preprocess:
|
|
state_dict, metadata = _flatten_optim_state_dict(state_dict=shard)
|
|
else:
|
|
state_dict = shard
|
|
metadata = None
|
|
|
|
if pinned_state_dict is not None:
|
|
sub_pinned_state_dict = {k: pinned_state_dict[k] for k in state_dict.keys()}
|
|
else:
|
|
sub_pinned_state_dict = create_pinned_state_dict(state_dict)
|
|
returned_state_dict.update(sub_pinned_state_dict)
|
|
|
|
# Only save on master rank.
|
|
writer = move_and_save(checkpoint_file_path, state_dict, sub_pinned_state_dict, metadata)
|
|
writers.append(writer)
|
|
shard_filenames.append(shard_file)
|
|
del shard
|
|
|
|
# Clean folder, deleted unneeded files.
|
|
clean_folder(checkpoint, base_filename, shard_filenames, is_master=is_master, use_pp_format=use_pp_format)
|
|
|
|
return total_size, returned_state_dict, writers
|
|
|
|
|
|
def shard_model_checkpoint(
|
|
state_dict: torch.Tensor,
|
|
max_shard_size: int = 1024,
|
|
pinned_state_dicts: Optional[Dict[int, Dict[str, torch.Tensor]]] = None,
|
|
) -> Iterator[Tuple[OrderedDict, int]]:
|
|
"""
|
|
Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
|
|
given size.
|
|
"""
|
|
state_dict_sharder = StateDictSharder(max_shard_size)
|
|
|
|
for key, weight in state_dict.items():
|
|
if not is_distributed_tensor(weight):
|
|
if pinned_state_dicts is not None:
|
|
if key not in pinned_state_dicts:
|
|
pinned_state_dicts[key] = torch.empty_like(weight, pin_memory=True, device="cpu")
|
|
pinned_state_dicts[key].copy_(weight)
|
|
weight = pinned_state_dicts[key]
|
|
block, block_size = state_dict_sharder.append_param(key, weight)
|
|
|
|
if block != None:
|
|
yield block, block_size
|
|
|
|
# Return the last block in sharder.
|
|
yield state_dict_sharder.current_block, state_dict_sharder.current_block_size
|
|
|
|
|
|
def shard_optimizer_checkpoint(
|
|
state_dict: dict, max_shard_size: int = 1024, pinned_state_dicts: Optional[Dict[str, torch.Tensor]] = None
|
|
) -> Iterator[Tuple[OrderedDict, int]]:
|
|
"""
|
|
Splits an optimizer state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
|
|
given size.
|
|
"""
|
|
|
|
# Only split state_dict['state']; state_dict['param_group'] is not considered in this function.
|
|
states = state_dict["state"]
|
|
state_dict_sharder = StateDictSharder(max_shard_size)
|
|
|
|
for param_id, state in states.items():
|
|
if pinned_state_dicts is not None:
|
|
if param_id not in pinned_state_dicts:
|
|
pinned_state_dicts[param_id] = {}
|
|
for k, v in state.items():
|
|
if k not in pinned_state_dicts[param_id]:
|
|
pinned_state_dicts[param_id][k] = torch.empty_like(v, pin_memory=True, device="cpu")
|
|
pinned_state_dicts[param_id][k].copy_(v)
|
|
state[k] = pinned_state_dicts[param_id][k]
|
|
|
|
block, block_size = state_dict_sharder.append_optim_state(param_id, state)
|
|
if block != None:
|
|
yield block, block_size
|
|
|
|
# Return the last block in sharder.
|
|
yield state_dict_sharder.current_block, state_dict_sharder.current_block_size
|
|
|
|
|
|
# ======================================
|
|
# Helper functions for saving state dict
|
|
# ======================================
|
|
|
|
|
|
def save_state_dict(
|
|
state_dict: dict,
|
|
checkpoint_file_path: str,
|
|
use_safetensors: bool,
|
|
) -> None:
|
|
"""
|
|
Save state dict to checkpoint.
|
|
|
|
Args:
|
|
state_dict (dict): state dict.
|
|
checkpoint_file_path (str): path to the checkpoint file.
|
|
use_safetensors (bool): whether to use safetensors to save the checkpoint.
|
|
"""
|
|
# Move all tensors in the state_dict to CPU before saving to avoid serialization issues
|
|
state_dict_cpu = tree_map(lambda x: x.data.cpu() if torch.is_tensor(x) else x, state_dict)
|
|
|
|
if use_safetensors:
|
|
assert is_safetensors_available(), "safetensors is not available."
|
|
assert checkpoint_file_path.endswith(
|
|
".safetensors"
|
|
), "safetensors only supports .safetensors suffix for checkpoint file."
|
|
from safetensors.torch import save_file as safe_save_file
|
|
|
|
safe_save_file(state_dict_cpu, checkpoint_file_path, metadata={"format": "pt"})
|
|
else:
|
|
torch.save(state_dict_cpu, checkpoint_file_path)
|
|
|
|
|
|
def save_param_groups(state_dict: dict, group_file_path: str) -> None:
|
|
"""
|
|
Save information of param_groups to given file path.
|
|
|
|
Args:
|
|
state_dict (dict): state dict.
|
|
group_file_path (str): path to the group file.
|
|
"""
|
|
param_groups = state_dict["param_groups"]
|
|
torch.save(param_groups, group_file_path)
|
|
|
|
|
|
def clean_folder(
|
|
checkpoint_path: str,
|
|
weights_name: str,
|
|
shard_filenames: List[str],
|
|
is_master: bool = True,
|
|
use_pp_format: bool = False,
|
|
):
|
|
"""
|
|
Clean the unneeded files in checkpoint directory after shards of state_dict have been saved.
|
|
|
|
Args:
|
|
checkpoint_path (str): Path to the checkpoint directory.
|
|
weights_name (str): Decides the prefix of filenames of weight shards.
|
|
shard_filenames (List[str]): The list of saved shard filenames which should not be removed.
|
|
is_master (bool, optional): Whether current rank is main process. Defaults to True.
|
|
use_pp_format: (bool, optional): Whether to save the files in pipeline format including stage information. Defaults to False.
|
|
|
|
"""
|
|
if is_master:
|
|
for filename in os.listdir(checkpoint_path):
|
|
full_filename = os.path.join(checkpoint_path, filename)
|
|
weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "")
|
|
filename_no_suffix = filename.replace(".bin", "").replace(".safetensors", "")
|
|
if not use_pp_format:
|
|
reg = re.compile(r"(.*?)-\d{5}")
|
|
else:
|
|
# When this checkpoint is created by pipeline parallel process, the pattern is a little different.
|
|
reg = re.compile(r"(.*?)-stage-\d{5}-shard-\d{5}")
|
|
if (
|
|
filename.startswith(weights_no_suffix)
|
|
and filename not in shard_filenames
|
|
and reg.fullmatch(filename_no_suffix) is not None
|
|
):
|
|
os.remove(full_filename)
|
|
|
|
|
|
def save_config_file(model: nn.Module, checkpoint_path: str, is_master: bool = True):
|
|
"""
|
|
Save config.json/generation_config.json if model is a Huggingface pretrained model.
|
|
This method can only be called when a model is saved in a sharded way.
|
|
|
|
Args:
|
|
model (nn.Module): The model whose config should be saved if it's a huggingface model.
|
|
checkpoint_path (str): Path to the checkpoint directory.
|
|
is_master (bool): Whether current rank is main process.
|
|
"""
|
|
try:
|
|
from transformers.modeling_utils import PreTrainedModel, get_parameter_dtype
|
|
from transformers.modeling_utils import unwrap_model as unwrap_huggingface_model
|
|
except ImportError:
|
|
return
|
|
if not isinstance(model, PreTrainedModel):
|
|
return
|
|
|
|
model = unwrap_huggingface_model(model)
|
|
|
|
# save the string version of dtype to the config, e.g. convert torch.float32 => "float32"
|
|
dtype = get_parameter_dtype(model)
|
|
model.config.torch_dtype = str(dtype).split(".")[1]
|
|
|
|
# Attach architecture to the config
|
|
model.config.architectures = [model.__class__.__name__]
|
|
|
|
# Save the config
|
|
if is_master:
|
|
model.config.save_pretrained(checkpoint_path)
|
|
if model.can_generate():
|
|
model.generation_config.save_pretrained(checkpoint_path)
|
|
|
|
|
|
def save_dtensor(name: str, tensor: torch.Tensor, index_file: "CheckpointIndexFile", use_safetensors: bool) -> None:
|
|
"""
|
|
Save distributed tensor to checkpoint. This checkpoint will be a dictionary which contains
|
|
only one tensor.
|
|
|
|
Args:
|
|
tensor (Tensor): tensor to be saved.
|
|
index_file (CheckpointIndexFile): path to the checkpoint file.
|
|
size_per_shard (int): size per shard in MB.
|
|
"""
|
|
root_path = index_file.root_path
|
|
output_root_path = root_path.joinpath("dtensor")
|
|
|
|
# create directory
|
|
output_root_path.mkdir(exist_ok=True)
|
|
|
|
# save tensor to this directory
|
|
# TODO(YuliangLiu): get index of the tensor shard
|
|
# e.g. index =
|
|
index = 0
|
|
|
|
# save tensor to file
|
|
ckpt_file_name = generate_dtensor_file_name(name, index, use_safetensors)
|
|
ckpt_file_path = output_root_path.joinpath(ckpt_file_name)
|
|
|
|
# dtensor ckpt file always contains only one tensor
|
|
state_dict = {name: tensor}
|
|
save_state_dict(state_dict, str(ckpt_file_path), use_safetensors)
|
|
|
|
# update the weight map
|
|
# * means all shards
|
|
ckpt_file_name_in_weight_map = "dtensor/" + generate_dtensor_file_name(name, "*", use_safetensors)
|
|
index_file.append_weight_map(name, ckpt_file_name_in_weight_map)
|
|
|
|
|
|
def get_checkpoint_file_suffix(use_safetensors: bool) -> str:
|
|
"""
|
|
Get checkpoint file suffix.
|
|
|
|
Args:
|
|
use_safetensors (bool): whether to use safetensors to save the checkpoint.
|
|
|
|
Returns:
|
|
str: checkpoint file suffix.
|
|
"""
|
|
if use_safetensors:
|
|
return ".safetensors"
|
|
else:
|
|
return ".bin"
|
|
|
|
|
|
def generate_checkpoint_shard_file_name(
|
|
index: int, total_number: int, use_safetensors: bool, prefix: str = None
|
|
) -> str:
|
|
"""
|
|
Generate checkpoint shard file name.
|
|
|
|
Args:
|
|
index (int): index of the shard.
|
|
total_number (int): total number of shards.
|
|
use_safetensors (bool): whether to use safetensors to save the checkpoint.
|
|
prefix (str): prefix of the shard file name. Default: None.
|
|
|
|
Returns:
|
|
str: checkpoint shard file name.
|
|
"""
|
|
suffix = get_checkpoint_file_suffix(use_safetensors)
|
|
|
|
if prefix is None:
|
|
return f"{index:05d}-of-{total_number:05d}.{suffix}"
|
|
else:
|
|
return f"{prefix}-{index:05d}-of-{total_number:05d}.{suffix}"
|
|
|
|
|
|
def generate_dtensor_file_name(param_name: str, index: int, use_safetensors: bool) -> str:
|
|
"""
|
|
Generate dtensor file name.
|
|
|
|
Args:
|
|
param_name (str): name of the distributed parameter.
|
|
index (int): index of the shard.
|
|
use_safetensors (bool): whether to use safetensors to save the checkpoint.
|
|
|
|
Returns:
|
|
str: dtensor file name.
|
|
"""
|
|
suffix = get_checkpoint_file_suffix(use_safetensors)
|
|
return f"{param_name}.{index}.{suffix}"
|
|
|
|
|
|
# ========================================
|
|
# Helper functions for loading state dict
|
|
# ========================================
|
|
|
|
|
|
def load_shard_state_dict(checkpoint_file: Path, use_safetensors: bool = False):
|
|
"""
|
|
load shard state dict into model
|
|
"""
|
|
if use_safetensors and not checkpoint_file.suffix == ".safetensors":
|
|
raise Exception("load the model using `safetensors`, but no file endwith .safetensors")
|
|
if use_safetensors:
|
|
from safetensors.torch import load_file as safe_load_file
|
|
|
|
return safe_load_file(checkpoint_file)
|
|
else:
|
|
return torch.load(checkpoint_file, map_location=torch.device("cpu"))
|
|
|
|
|
|
def load_state_dict_into_model(
|
|
model: nn.Module, state_dict: torch.Tensor, missing_keys: List, strict: bool = False, load_sub_module: bool = True
|
|
):
|
|
r"""Copies parameters and buffers from :attr:`state_dict` into
|
|
this module and its descendants.
|
|
|
|
Args:
|
|
state_dict (dict): a dict containing parameters and
|
|
persistent buffers.
|
|
"""
|
|
if not isinstance(state_dict, Mapping):
|
|
raise TypeError("Expected state_dict to be dict-like, got {}.".format(type(state_dict)))
|
|
|
|
unexpected_keys: List[str] = []
|
|
sub_missing_keys: List[str] = []
|
|
error_msgs: List[str] = []
|
|
|
|
# copy state_dict so _load_from_state_dict can modify it
|
|
metadata = getattr(state_dict, "_metadata", None)
|
|
state_dict = OrderedDict(state_dict)
|
|
if metadata is not None:
|
|
state_dict._metadata = metadata
|
|
|
|
def load(module: nn.Module, state_dict, prefix="", load_sub_module: bool = True):
|
|
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
|
|
args = (state_dict, prefix, local_metadata, True, sub_missing_keys, unexpected_keys, error_msgs)
|
|
# Parameters of module and children will start with prefix. We can exit early if there are none in this
|
|
# state_dict
|
|
if strict or len([key for key in state_dict if key.startswith(prefix)]) > 0:
|
|
module._load_from_state_dict(*args)
|
|
if load_sub_module:
|
|
for name, child in module._modules.items():
|
|
if child is not None:
|
|
load(child, state_dict, prefix + name + ".")
|
|
|
|
load(model, state_dict, "", load_sub_module)
|
|
del load
|
|
|
|
missing_keys = missing_keys.append(sub_missing_keys)
|
|
|
|
if strict:
|
|
if len(unexpected_keys) > 0:
|
|
error_msgs = [
|
|
"Unexpected key(s) in state_dict: {}. ".format(", ".join('"{}"'.format(k) for k in unexpected_keys))
|
|
]
|
|
raise RuntimeError(
|
|
"Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs))
|
|
)
|
|
|
|
|
|
def load_param_groups_into_optimizer(optimizer: Optimizer, param_group_path: str) -> dict:
|
|
"""
|
|
Load information of param_groups into an initialized optimizer.
|
|
"""
|
|
|
|
# Load list of param_groups from given file path.
|
|
# The params in saved_groups are in the form of integer indices.
|
|
saved_groups = torch.load(param_group_path, map_location=torch.device("cpu"))
|
|
if not isinstance(saved_groups, List):
|
|
raise ValueError(f"The param_groups saved at {param_group_path} is not of List type")
|
|
|
|
# The params in param_groups are in the form of pytorch tensors.
|
|
# For more details, please view source code of Optimizer class in pytorch.
|
|
param_groups = optimizer.param_groups
|
|
|
|
# Check the compatibility of saved_groups and param_groups.
|
|
if len(param_groups) != len(saved_groups):
|
|
raise ValueError("loaded state dict has a different number of original parameter groups")
|
|
param_lens = (len(g["params"]) for g in param_groups)
|
|
saved_lens = (len(g["params"]) for g in saved_groups)
|
|
if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)):
|
|
raise ValueError(
|
|
"loaded state dict contains a parameter group " "that doesn't match the size of optimizer's group"
|
|
)
|
|
|
|
# Creating mapping from id to parameters.
|
|
id_map = {
|
|
old_id: p
|
|
for old_id, p in zip(
|
|
chain.from_iterable((g["params"] for g in saved_groups)),
|
|
chain.from_iterable((g["params"] for g in param_groups)),
|
|
)
|
|
}
|
|
|
|
# Update parameter groups, setting their 'params' value.
|
|
def update_group(group, new_group):
|
|
new_group["params"] = group["params"]
|
|
return new_group
|
|
|
|
updated_groups = [update_group(g, ng) for g, ng in zip(param_groups, saved_groups)]
|
|
|
|
optimizer.__dict__.update({"param_groups": updated_groups})
|
|
return id_map
|
|
|
|
|
|
def load_states_into_optimizer(optimizer: Optimizer, state_dict: dict, id_map: dict, strict: bool = False):
|
|
r"""Copies states from `state_dict` into an Optimizer object.
|
|
|
|
Args:
|
|
optimizer(Optimizer): An initialized Optimizer object to be loaded
|
|
state_dict(dict): A mapping from tensor index (an integer)
|
|
to its states to be loaded (a mapping from state name to a tensor).
|
|
id_map(dict): A mapping from tensor index (an integer)
|
|
to its corresponding parameter (a tensor) whose states will be updated.
|
|
strict(bool, optional): If set to True, only load the parameters with its id in id_map. Defaults to False.
|
|
"""
|
|
|
|
# Ensure that the keys of state_dict are integers.
|
|
state_dict = {int(k): v for k, v in state_dict.items()}
|
|
|
|
def cast(param, value, key=None):
|
|
r"""Make a deep copy of value, casting all tensors to device of param."""
|
|
if isinstance(value, torch.Tensor):
|
|
# Floating-point types are a bit special here. They are the only ones
|
|
# that are assumed to always match the type of params.
|
|
# Make sure state['step'] is not casted https://github.com/pytorch/pytorch/issues/74424
|
|
if key != "step":
|
|
if param.is_floating_point():
|
|
value = value.to(param.dtype)
|
|
value = value.to(param.device, non_blocking=True)
|
|
return value
|
|
elif isinstance(value, dict):
|
|
return {k: cast(param, v, key=k) for k, v in value.items()}
|
|
elif isinstance(value, container_abcs.Iterable):
|
|
return type(value)(cast(param, v) for v in value)
|
|
else:
|
|
return value
|
|
|
|
# Copy state assigned to params (and cast tensors to appropriate types).
|
|
# State that is not assigned to params is copied as is (needed for
|
|
# backward compatibility).
|
|
new_states = defaultdict(dict)
|
|
for k, v in state_dict.items():
|
|
if k in id_map:
|
|
param = id_map[k]
|
|
new_states[param] = cast(param, v)
|
|
elif not strict:
|
|
new_states[k] = v
|
|
|
|
get_accelerator().synchronize()
|
|
optimizer.state.update(new_states)
|
|
|
|
|
|
def sharded_optimizer_loading_epilogue(optimizer: Optimizer):
|
|
r"""Do the cleaning up work after state_dict has been loaded into optimizer
|
|
|
|
Args:
|
|
optimizer(Optimizer): An optimizer object whose state has just been loaded.
|
|
"""
|
|
|
|
# Do the cleaning up as in src code of Pytorch.
|
|
if Version(torch.__version__) >= Version("2.0.0"):
|
|
optimizer._patch_step_function() # To support multiprocessing pickle/unpickle
|
|
else:
|
|
optimizer._hook_for_profile() # To support multiprocessing pickle/unpickle.
|
|
optimizer.defaults.setdefault("differentiable", False)
|
|
|
|
|
|
def has_index_file(checkpoint_path: str) -> Tuple[bool, Optional[Path]]:
|
|
"""
|
|
Check whether the checkpoint has an index file.
|
|
|
|
Args:
|
|
checkpoint_path (str): path to the checkpoint.
|
|
|
|
Returns:
|
|
Tuple[bool, Optional[Path]]: a tuple of (has_index_file, index_file_path)
|
|
"""
|
|
checkpoint_path = Path(checkpoint_path)
|
|
if checkpoint_path.is_file():
|
|
# check if it is .index.json
|
|
reg = re.compile("(.*?).index((\..*)?).json")
|
|
if reg.fullmatch(checkpoint_path.name) is not None:
|
|
return True, checkpoint_path
|
|
else:
|
|
return False, None
|
|
elif checkpoint_path.is_dir():
|
|
# check if there is only one a file ending with .index.json in this directory
|
|
index_files = list(checkpoint_path.glob("*.index.*json"))
|
|
|
|
# if we found a .index.json file, make sure there is only one
|
|
if len(index_files) > 0:
|
|
assert (
|
|
len(index_files) == 1
|
|
), f"Expected to find one .index.json file in {checkpoint_path}, but found {len(index_files)}"
|
|
|
|
if len(index_files) == 1:
|
|
return True, index_files[0]
|
|
else:
|
|
return False, None
|
|
else:
|
|
raise RuntimeError(f"Invalid checkpoint path {checkpoint_path}. Expected a file or a directory.")
|
|
|
|
|
|
def load_state_dict(checkpoint_file_path: Path):
|
|
"""
|
|
Load state dict from checkpoint.
|
|
|
|
Args:
|
|
checkpoint_file_path (Path): path to the checkpoint file.
|
|
|
|
Returns:
|
|
dict: state dict.
|
|
"""
|
|
|
|
assert not is_dtensor_checkpoint(
|
|
checkpoint_file_path
|
|
), f"Cannot load state dict from dtensor checkpoint {checkpoint_file_path}, you should convert the distributed tensors to gathered tensors with our CLI offline."
|
|
|
|
if is_safetensor_checkpoint(checkpoint_file_path):
|
|
assert (
|
|
is_safetensors_available()
|
|
), f"Cannot load state dict from safetensor checkpoint {checkpoint_file_path}, because safetensors is not available. Please install safetensors first with pip install safetensors."
|
|
# load with safetensors
|
|
from safetensors import safe_open
|
|
|
|
state_dict = {}
|
|
with safe_open(checkpoint_file_path, framework="pt", device="cpu") as f:
|
|
for k in f.keys():
|
|
state_dict[k] = f.get_tensor(k)
|
|
return state_dict
|
|
|
|
else:
|
|
# load with torch
|
|
return torch.load(checkpoint_file_path, map_location=torch.device("cpu"))
|
|
|
|
|
|
def add_prefix(weights_name: str, prefix: Optional[str] = None) -> str:
|
|
if prefix is not None and len(prefix) > 0:
|
|
splits = weights_name.split(".")
|
|
splits = splits[:-1] + [prefix] + splits[-1:]
|
|
weights_name = ".".join(splits)
|
|
|
|
return weights_name
|
|
|
|
|
|
def get_model_base_filenames(prefix: str = None, use_safetensors: bool = False):
|
|
"""
|
|
generate base model weight filenames
|
|
"""
|
|
weights_name = SAFE_WEIGHTS_NAME if use_safetensors else WEIGHTS_NAME
|
|
weights_name = add_prefix(weights_name, prefix)
|
|
|
|
save_index_file = SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME
|
|
save_index_file = add_prefix(save_index_file, prefix)
|
|
|
|
return weights_name, save_index_file
|
|
|
|
|
|
def get_optimizer_base_filenames(prefix: str = None, use_safetensors: bool = False):
|
|
"""
|
|
generate base optimizer state filenames
|
|
"""
|
|
states_name = SAFE_STATE_NAME if use_safetensors else STATES_NAME
|
|
states_name = add_prefix(states_name, prefix)
|
|
|
|
save_index_file = SAFE_STATES_INDEX_NAME if use_safetensors else STATES_INDEX_NAME
|
|
save_index_file = add_prefix(save_index_file, prefix)
|
|
|
|
param_group_file = GROUP_FILE_NAME
|
|
param_group_file = add_prefix(param_group_file, prefix)
|
|
|
|
return states_name, save_index_file, param_group_file
|
|
|
|
|
|
def get_shard_filename(weights_name: str, idx: int):
|
|
"""
|
|
get shard file name
|
|
"""
|
|
shard_file = weights_name.replace(".bin", f"-{idx+1:05d}.bin")
|
|
shard_file = shard_file.replace(".safetensors", f"-{idx+1:05d}.safetensors")
|
|
return shard_file
|
|
|
|
|
|
def _pin_tensor(tensor: torch.Tensor, empty: bool = True) -> torch.Tensor:
|
|
if empty:
|
|
return torch.empty_like(tensor, pin_memory=True, device="cpu")
|
|
return tensor.pin_memory()
|
|
|
|
|
|
def create_pinned_state_dict(
|
|
state_dict: Union[Dict[str, torch.Tensor], Dict[int, Dict[str, torch.Tensor]]],
|
|
empty: bool = True,
|
|
num_threads: int = 1,
|
|
) -> Dict[str, torch.Tensor]:
|
|
if num_threads == 1:
|
|
return tree_map(lambda x: _pin_tensor(x, empty=empty) if isinstance(x, torch.Tensor) else x, state_dict)
|
|
else:
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
|
|
elems, spec = tree_flatten(state_dict)
|
|
future_to_idx = {}
|
|
for i, elem in enumerate(elems):
|
|
if isinstance(elem, torch.Tensor):
|
|
future_to_idx[executor.submit(_pin_tensor, elem, empty)] = i
|
|
for future in concurrent.futures.as_completed(future_to_idx):
|
|
idx = future_to_idx[future]
|
|
elems[idx] = future.result()
|
|
return tree_unflatten(elems, spec)
|
|
|
|
|
|
def load_optim_or_model_shard(path: str, is_optim: bool, use_safetensors: bool) -> dict:
|
|
if is_optim:
|
|
if path.endswith(".safetensors"):
|
|
state_dict = load_flat(path)
|
|
else:
|
|
state_dict = load_shard_state_dict(Path(path), use_safetensors=False)
|
|
else:
|
|
state_dict = load_shard_state_dict(Path(path), use_safetensors)
|
|
return state_dict
|
|
|
|
|
|
def load_state_dict_shards(
|
|
checkpoint_files: List[str],
|
|
is_optim: bool,
|
|
use_safetensors: bool,
|
|
low_cpu_mem_mode: bool = True,
|
|
prefetch: int = 3,
|
|
) -> Generator[dict, None, None]:
|
|
if low_cpu_mem_mode:
|
|
for shard_file in checkpoint_files:
|
|
state_dict = load_optim_or_model_shard(shard_file, is_optim, use_safetensors)
|
|
yield state_dict
|
|
else:
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=prefetch) as executor:
|
|
futures = []
|
|
for shard_file in checkpoint_files:
|
|
future = executor.submit(load_optim_or_model_shard, shard_file, is_optim, use_safetensors)
|
|
futures.append(future)
|
|
for future in concurrent.futures.as_completed(futures):
|
|
yield future.result()
|
|
|
|
|
|
# adapted from `peft/utils/save_and_load.py`
|
|
def get_lora_state_dict(
|
|
model: PeftModel, state_dict: dict, adapter_name="default", save_embedding_layers="auto"
|
|
) -> dict:
|
|
config = model.peft_config[adapter_name]
|
|
if config.peft_type != PeftType.LORA:
|
|
raise ValueError(f"Adapter {adapter_name} is not a LORA adapter.")
|
|
# to_return = lora_state_dict(model, bias=model.peft_config.bias)
|
|
# adapted from `https://github.com/microsoft/LoRA/blob/main/loralib/utils.py`
|
|
# to be used directly with the state dict which is necessary when using DeepSpeed or FSDP
|
|
bias = config.bias
|
|
if bias == "none":
|
|
to_return = {k: state_dict[k] for k in state_dict if "lora_" in k}
|
|
elif bias == "all":
|
|
to_return = {k: state_dict[k] for k in state_dict if "lora_" in k or "bias" in k}
|
|
elif bias == "lora_only":
|
|
to_return = {}
|
|
for k in state_dict:
|
|
if "lora_" in k:
|
|
to_return[k] = state_dict[k]
|
|
bias_name = k.split("lora_")[0] + "bias"
|
|
if bias_name in state_dict:
|
|
to_return[bias_name] = state_dict[bias_name]
|
|
else:
|
|
raise NotImplementedError
|
|
to_return = {k: v for k, v in to_return.items() if (("lora_" in k and adapter_name in k) or ("bias" in k))}
|
|
if config.use_dora:
|
|
# Here we take care of a refactor of DoRA which changed lora_magnitude_vector from a ParameterDict to a
|
|
# ModuleDict with a DoraLayer instance. The old parameter is now the "weight" attribute of that layer. Since
|
|
# we want the state_dict format not to change, we remove the "weight" part.
|
|
new_dora_suffix = f"lora_magnitude_vector.{adapter_name}.weight"
|
|
|
|
def renamed_dora_weights(k):
|
|
if k.endswith(new_dora_suffix):
|
|
k = k[:-7] # remove ".weight"
|
|
return k
|
|
|
|
to_return = {renamed_dora_weights(k): v for k, v in to_return.items()}
|
|
|
|
# DEAL WITH EMBEDDINGS
|
|
# check the common embedding layers in `target_modules` to reset `save_embedding_layers` if necessary
|
|
is_embedding_in_target_modules = False
|
|
if (
|
|
save_embedding_layers == "auto"
|
|
and hasattr(config, "target_modules")
|
|
and any(k in config.target_modules for k in EMBEDDING_LAYER_NAMES)
|
|
):
|
|
warnings.warn("Setting `save_embedding_layers` to `True` as embedding layers found in `target_modules`.")
|
|
save_embedding_layers = is_embedding_in_target_modules = True
|
|
elif save_embedding_layers == "auto":
|
|
vocab_size = getattr(getattr(model, "config", None), "vocab_size", None)
|
|
model_id = getattr(config, "base_model_name_or_path", None)
|
|
|
|
# For some models e.g. diffusers the text config file is stored in a subfolder
|
|
# we need to make sure we can download that config.
|
|
has_base_config = False
|
|
|
|
# ensure that this check is not performed in HF offline mode, see #1452
|
|
if model_id is not None:
|
|
local_config_exists = os.path.exists(os.path.join(model_id, "config.json"))
|
|
exists = local_config_exists or check_file_exists_on_hf_hub(model_id, "config.json")
|
|
if exists is None:
|
|
# check failed, could not determine if it exists or not
|
|
warnings.warn(
|
|
f"Could not find a config file in {model_id} - will assume that the vocabulary was not modified."
|
|
)
|
|
has_base_config = False
|
|
else:
|
|
has_base_config = exists
|
|
|
|
# check if the vocab size of the base model is different from the vocab size of the finetuned model
|
|
if (
|
|
vocab_size
|
|
and model_id
|
|
and has_base_config
|
|
and (vocab_size != model.config.__class__.from_pretrained(model_id).vocab_size)
|
|
):
|
|
warnings.warn(
|
|
"Setting `save_embedding_layers` to `True` as the embedding layer has been resized during finetuning."
|
|
)
|
|
save_embedding_layers = True
|
|
else:
|
|
save_embedding_layers = False
|
|
|
|
if save_embedding_layers and hasattr(model, "get_input_embeddings"):
|
|
for layer in [model.get_input_embeddings(), model.get_output_embeddings()]:
|
|
if not is_embedding_in_target_modules or has_valid_embedding_base_layer(layer):
|
|
# support from version >= 0.6.2
|
|
embedding_module_name = get_embedding_layer_name(model, layer, is_embedding_in_target_modules)
|
|
if embedding_module_name:
|
|
to_return.update({k: v for k, v in state_dict.items() if embedding_module_name in k})
|
|
elif save_embedding_layers:
|
|
warnings.warn("Could not identify embedding layer(s) because the model is not a 🤗 transformers model.")
|
|
|
|
return to_return
|
|
|
|
|
|
def gather_state_dict_fast(
|
|
state_dict: Dict[str, torch.Tensor],
|
|
group: dist.ProcessGroup,
|
|
device: Optional[Union[torch.device, str]] = None,
|
|
dst: int = 0,
|
|
) -> Optional[Dict[str, torch.Tensor]]:
|
|
if device is None:
|
|
device = get_current_device()
|
|
rank = dist.get_rank(group)
|
|
world_size = dist.get_world_size(group)
|
|
metadata = [(k, v.shape, v.dtype) for k, v in state_dict.items()]
|
|
all_meta_data = [None] * world_size
|
|
if rank == dst:
|
|
returned_state_dict = state_dict.copy()
|
|
dist.gather_object(metadata, all_meta_data, dst=dist.get_global_rank(group, rank), group=group)
|
|
for i, target_metadata in enumerate(all_meta_data):
|
|
if i == dst:
|
|
continue
|
|
ops = []
|
|
for k, shape, dtype in target_metadata:
|
|
buffer = torch.empty(shape, dtype=dtype, device=get_current_device())
|
|
returned_state_dict[k] = buffer
|
|
ops.append(dist.P2POp(dist.irecv, buffer, dist.get_global_rank(group, i), group))
|
|
reqs = dist.batch_isend_irecv(ops)
|
|
for req, (k, *_) in zip(reqs, target_metadata):
|
|
req.wait()
|
|
returned_state_dict[k] = returned_state_dict[k].to(device)
|
|
return returned_state_dict
|
|
else:
|
|
dist.gather_object(metadata, dst=dist.get_global_rank(group, dst), group=group)
|
|
ops = []
|
|
for k, *_ in metadata:
|
|
ops.append(dist.P2POp(dist.isend, state_dict[k], dist.get_global_rank(group, dst), group))
|
|
reqs = dist.batch_isend_irecv(ops)
|
|
for req in reqs:
|
|
req.wait()
|