ColossalAI/colossalai/nn/optimizer/hybrid_adam.py

150 lines
6.7 KiB
Python

from typing import Any, Optional
import torch
from colossalai.kernel.op_builder import CPUAdamBuilder, FusedOptimBuilder
from colossalai.registry import OPTIMIZERS
from colossalai.utils import multi_tensor_applier
from .nvme_optimizer import NVMeOptimizer
@OPTIMIZERS.register_module
class HybridAdam(NVMeOptimizer):
"""Implements Adam algorithm.
Supports parameters updating on both GPU and CPU, depanding on the device of paramters.
But the parameters and gradients should on the same device:
* Parameters on CPU and gradients on CPU is allowed.
* Parameters on GPU and gradients on GPU is allowed.
* Parameters on GPU and gradients on CPU is **not** allowed.
Requires ColossalAI to be installed via ``pip install .``
This version of Hybrid Adam is an hybrid of CPUAdam and FusedAdam.
* For parameters updating on CPU, it uses CPUAdam.
* For parameters updating on GPU, it uses FusedAdam.
* Hybird precision calculation of fp16 and fp32 is supported, eg fp32 parameters and fp16 gradients.
:class:`colossalai.nn.optimizer.HybridAdam` may be used as a drop-in replacement for ``torch.optim.AdamW``,
or ``torch.optim.Adam`` with ``adamw_mode=False``
Adam was been proposed in `Adam: A Method for Stochastic Optimization`_.
Arguments:
model_params (iterable): iterable of parameters of dicts defining
parameter groups.
lr (float, optional): learning rate. (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square. (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability. (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False) NOT SUPPORTED yet in CPUAdam!
adamw_mode (boolean, optional): Apply L2 regularization or weight decay
True for decoupled weight decay(also known as AdamW) (default: True)
simd_log (boolean, optional): whether to show if you are using SIMD to
accelerate. (default: False)
nvme_offload_fraction (float, optional): Fraction of optimizer states to be offloaded to NVMe. Defaults to 0.0.
nvme_offload_dir (Optional[str], optional): Directory to save NVMe offload files.
If it's ``None``, a random temporary directory will be used. Defaults to None.
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
# Number of fp32 shards for per parameter
# Param weight, grad, momentum and variance
num_fp32_shards_per_param = 4
def __init__(self,
model_params,
lr=1e-3,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
adamw_mode=True,
nvme_offload_fraction: float = 0.0,
nvme_offload_dir: Optional[str] = None,
**defaults: Any):
default_args = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, bias_correction=bias_correction)
super(HybridAdam, self).__init__(model_params, default_args, nvme_offload_fraction, nvme_offload_dir)
self.adamw_mode = adamw_mode
# build during runtime if not found
cpu_optim = CPUAdamBuilder().load()
fused_optim = FusedOptimBuilder().load()
self.cpu_adam_op = cpu_optim.CPUAdamOptimizer(lr, betas[0], betas[1], eps, weight_decay, adamw_mode)
self.gpu_adam_op = fused_optim.multi_tensor_adam
self._dummy_overflow_buf = torch.cuda.IntTensor([0])
@torch.no_grad()
def step(self, closure=None, div_scale: float = -1):
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
self._pre_step('exp_avg', 'exp_avg_sq')
for _, group in enumerate(self.param_groups):
g_l, p_l, m_l, v_l = [], [], [], []
group_step = 0
for _, p in enumerate(group['params']):
if p.grad is None:
continue
state = self.state[p]
target_device = p.device
if len(state) == 0:
state['step'] = 0
# gradient momentums
state['exp_avg'] = torch.zeros_like(p, dtype=torch.float, device=target_device)
# gradient variances
state['exp_avg_sq'] = torch.zeros_like(p, dtype=torch.float, device=target_device)
self._post_state_init(p)
state['step'] += 1
group_step = state['step']
beta1, beta2 = group['betas']
if target_device.type == 'cpu':
assert state['exp_avg'].device.type == 'cpu', "exp_avg should stay on cpu"
assert state['exp_avg_sq'].device.type == 'cpu', "exp_avg should stay on cpu"
self._pre_update(p, 'exp_avg', 'exp_avg_sq')
self.cpu_adam_op.step(state['step'], group['lr'], beta1, beta2, group['eps'], group['weight_decay'],
group['bias_correction'], p.data, p.grad.data, state['exp_avg'],
state['exp_avg_sq'], div_scale)
self._post_update(p, 'exp_avg', 'exp_avg_sq')
elif target_device.type == 'cuda':
assert state['exp_avg'].device.type == 'cuda', "exp_avg should stay on cuda"
assert state['exp_avg_sq'].device.type == 'cuda', "exp_avg should stay on cuda"
# record the state by gruop and update at once
g_l.append(p.grad.data)
p_l.append(p.data)
m_l.append(state['exp_avg'])
v_l.append(state['exp_avg_sq'])
else:
raise RuntimeError
if len(g_l) > 0:
adamw_mode = 1 if self.adamw_mode else 0
bias_correction = 1 if group['bias_correction'] else 0
multi_tensor_applier(self.gpu_adam_op, self._dummy_overflow_buf, [g_l, p_l, m_l, v_l], group['lr'],
group['betas'][0], group['betas'][1], group['eps'], group_step, adamw_mode,
bias_correction, group['weight_decay'], div_scale)
self._post_step()
return loss