mirror of https://github.com/hpcaitech/ColossalAI
103 lines
2.7 KiB
Python
103 lines
2.7 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
import os
|
|
import pytest
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
from pathlib import Path
|
|
|
|
import colossalai
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.utils import get_dataloader
|
|
from torchvision import transforms
|
|
from torchvision.models import resnet18
|
|
from torchvision.datasets import CIFAR10
|
|
from functools import partial
|
|
|
|
BATCH_SIZE = 16
|
|
IMG_SIZE = 224
|
|
|
|
CONFIG = dict(
|
|
fp16=dict(
|
|
mode=None,
|
|
),
|
|
zero=dict(
|
|
level=2,
|
|
cpu_offload=True,
|
|
verbose=False,
|
|
),
|
|
parallel=dict(
|
|
pipeline=dict(size=1),
|
|
tensor=dict(size=1, mode=None)
|
|
)
|
|
)
|
|
|
|
|
|
def run_dist(rank, world_size):
|
|
colossalai.launch(config=CONFIG,
|
|
rank=rank,
|
|
world_size=world_size,
|
|
host='localhost',
|
|
port=29940,
|
|
backend='nccl')
|
|
|
|
# build model
|
|
model = resnet18(num_classes=10)
|
|
|
|
# build dataloader# build dataloaders
|
|
train_dataset = CIFAR10(
|
|
root=Path(os.environ['DATA']),
|
|
download=True,
|
|
transform=transforms.Compose(
|
|
[
|
|
transforms.Resize(size=(IMG_SIZE, IMG_SIZE)),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
|
|
]
|
|
)
|
|
)
|
|
train_dataloader = get_dataloader(dataset=train_dataset,
|
|
shuffle=True,
|
|
batch_size=BATCH_SIZE,
|
|
pin_memory=True,
|
|
drop_last=True)
|
|
|
|
# build optimizer and loss
|
|
# optimizer = build_optimizer(global_context.config.optimizer, model)
|
|
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
|
|
criterion = torch.nn.CrossEntropyLoss()
|
|
|
|
engine, train_dataloader, *args = colossalai.initialize(model=model,
|
|
optimizer=optimizer,
|
|
criterion=criterion,
|
|
train_dataloader=train_dataloader)
|
|
|
|
# train
|
|
model.train()
|
|
for idx, (data, label) in enumerate(train_dataloader):
|
|
engine.zero_grad()
|
|
data = data.cuda()
|
|
label = label.cuda()
|
|
|
|
output = engine(data)
|
|
loss = engine.criterion(output, label)
|
|
|
|
engine.backward(loss)
|
|
engine.step()
|
|
break
|
|
|
|
gpc.destroy()
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
@pytest.mark.dist
|
|
def test_zero_level_2():
|
|
world_size = 4
|
|
run_func = partial(run_dist, world_size=world_size)
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_zero_level_2()
|