ColossalAI/tests/test_trainer/test_pipeline/test_p2p.py

163 lines
5.8 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from colossalai.communication import (recv_backward, recv_forward,
recv_tensor_meta, send_backward,
send_backward_recv_forward, send_forward,
send_forward_recv_backward,
send_tensor_meta)
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.initialize import launch
from colossalai.logging import get_dist_logger
from colossalai.utils import get_current_device
from functools import partial
BATCH_SIZE = 16
SEQ_LENGTH = 64
HIDDEN_SIZE = 128
CONFIG = dict(
parallel=dict(
pipeline=dict(size=4),
tensor=dict(size=1, mode=None)
),
seed=1024
)
def check_equal(A, B):
return torch.allclose(A, B, rtol=1e-5, atol=1e-3)
def check_forward(output_tensor, rank, logger):
dist.barrier()
if gpc.is_first_rank(ParallelMode.PIPELINE):
tensor = output_tensor.clone()
else:
tensor = recv_forward(output_tensor.shape)
logger.info('Rank {} received forward. Correct tensor: {}'.format(
rank, check_equal(tensor, output_tensor)))
if not gpc.is_last_rank(ParallelMode.PIPELINE):
send_forward(tensor)
logger.info('Rank {} sent forward.'.format(rank))
def check_backward(output_grad, rank, logger):
dist.barrier()
if gpc.is_last_rank(ParallelMode.PIPELINE):
grad = output_grad.clone()
else:
grad = recv_backward(output_grad.shape)
logger.info('Rank {} received backward. Correct grad: {}'.format(
rank, check_equal(grad, output_grad)))
if not gpc.is_first_rank(ParallelMode.PIPELINE):
send_backward(grad)
logger.info('Rank {} sent backward.'.format(rank))
def check_forward_backward(output_tensor, output_grad, rank, logger):
dist.barrier()
if not gpc.is_first_rank(ParallelMode.PIPELINE):
tensor = send_backward_recv_forward(output_grad, output_tensor.shape)
logger.info(
'Rank {} sent backward received forward. Correct tensor: {}'.
format(rank, check_equal(tensor, output_tensor)))
if not gpc.is_last_rank(ParallelMode.PIPELINE):
grad = send_forward_recv_backward(output_tensor, output_grad.shape)
logger.info(
'Rank {} sent forward received backward. Correct grad: {}'.format(
rank, check_equal(grad, output_grad)))
def check_op(size, rank, prev_rank, next_rank, up_group, down_group, logger):
dtype = torch.float32
device = get_current_device()
tensor_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
# recv_tensor_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
grad_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
tensor = torch.randn(tensor_shape, dtype=dtype, device=device)
dist.all_reduce(tensor)
grad = torch.randn(grad_shape, dtype=dtype, device=device)
dist.all_reduce(grad)
if rank % 2 == 0:
need_meta = True
need_meta = send_tensor_meta(tensor, need_meta)
logger.info('Rank {} shape sent (need meta: {}).'.format(
rank, need_meta))
req = dist.broadcast(tensor, src=rank, group=down_group, async_op=True)
req.wait()
out = tensor.clone()
logger.info('Rank {} test op: tensor sent.'.format(rank))
else:
recv_tensor_shape = recv_tensor_meta(None)
logger.info('Rank {} shape received. Correct shape: {}'.format(
rank, tensor_shape == recv_tensor_shape))
out = torch.empty(recv_tensor_shape, dtype=dtype, device=device)
req = dist.broadcast(out, src=prev_rank, group=up_group, async_op=True)
req.wait()
logger.info('Rank {} test op: received tensor ({})'.format(
rank, out.shape))
logger.info('Rank {} test op. Correct tensor: {}'.format(
rank, check_equal(tensor, out)))
def check_comm(size, rank, prev_rank, next_rank, up_group, down_group, logger):
dtype = torch.float32
device = get_current_device()
tensor_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
grad_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
tensor = torch.randn(tensor_shape, dtype=dtype, device=device)
dist.all_reduce(tensor)
grad = torch.randn(grad_shape, dtype=dtype, device=device)
dist.all_reduce(grad)
check_op(size, rank, prev_rank, next_rank, up_group, down_group, logger)
check_forward(tensor, rank, logger)
check_backward(grad, rank, logger)
check_forward_backward(tensor, grad, rank, logger)
def run_check(rank, world_size):
launch(
config=CONFIG,
rank=rank,
world_size=world_size,
host='localhost',
port=29932,
backend='nccl'
)
logger = get_dist_logger()
rank = gpc.get_global_rank()
prev_rank = gpc.get_prev_global_rank(ParallelMode.PIPELINE)
up_ranks = gpc.get_ranks_in_group(ParallelMode.PIPELINE_PREV)
up_group = gpc.get_group(ParallelMode.PIPELINE_PREV)
next_rank = gpc.get_next_global_rank(ParallelMode.PIPELINE)
down_ranks = gpc.get_ranks_in_group(ParallelMode.PIPELINE_NEXT)
down_group = gpc.get_group(ParallelMode.PIPELINE_NEXT)
logger.info(
'Rank {0}: prev rank {1} (up: {2}), next rank {3} (down: {4})'.format(
rank, prev_rank, up_ranks, next_rank, down_ranks))
logger.info('Distributed environment is initialzied.')
check_comm(world_size, rank, prev_rank, next_rank, up_group, down_group,
logger)
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
def test_p2p():
world_size = 4
run_func = partial(run_check, world_size=world_size)
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_p2p()