ColossalAI/applications/Chat/coati/models/base/critic.py

35 lines
1.2 KiB
Python

import torch
import torch.nn as nn
from ..lora import LoRAModule
class Critic(LoRAModule):
"""
Critic model base class.
Args:
model (nn.Module): Critic model.
value_head (nn.Module): Value head to get value.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(
self, model: nn.Module, value_head: nn.Module, lora_rank: int = 0, lora_train_bias: str = "none"
) -> None:
super().__init__(lora_rank=lora_rank, lora_train_bias=lora_train_bias)
self.model = model
self.value_head = value_head
self.convert_to_lora()
def forward(self, sequences: torch.LongTensor, attention_mask: torch.Tensor) -> torch.Tensor:
outputs = self.model(sequences, attention_mask=attention_mask)
last_hidden_states = outputs["last_hidden_state"]
sequence_lengths = torch.max(attention_mask * torch.arange(sequences.size(1), device=sequences.device), dim=1)[
0
]
sequence_hidden_states = last_hidden_states[torch.arange(last_hidden_states.size(0)), sequence_lengths]
values = self.value_head(sequence_hidden_states).squeeze(1) # ensure shape is (B, )
return values