ColossalAI/tests/test_layers/test_3d/test_3d.py

64 lines
2.0 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from functools import partial
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.core import global_context as gpc
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
from colossalai.utils import free_port
from colossalai.testing import rerun_if_address_is_in_use, skip_if_not_enough_gpus
from checks_3d.check_layer_3d import (check_classifier_given_embed_weight, check_classifier_no_given_weight,
check_embed, check_layernorm, check_linear, check_loss, check_patch_embed,
check_vocab_parallel_classifier_given_embed_weight,
check_vocab_parallel_classifier_no_given_weight, check_vocab_parallel_embed,
check_vocab_parallel_loss)
CONFIG = dict(
parallel=dict(
pipeline=1,
tensor=dict(mode='3d', size=8),
),
seed=42,
)
def check_layer():
check_linear()
check_layernorm()
check_classifier_no_given_weight()
check_vocab_parallel_classifier_no_given_weight()
check_classifier_given_embed_weight()
check_vocab_parallel_classifier_given_embed_weight()
check_embed()
check_patch_embed()
check_vocab_parallel_embed()
check_loss()
check_vocab_parallel_loss()
def check_layer_and_operation(rank, world_size, port):
disable_existing_loggers()
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = True
check_layer()
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
@skip_if_not_enough_gpus(min_gpus=8)
@rerun_if_address_is_in_use()
def test_3d():
world_size = 8
run_func = partial(check_layer_and_operation, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_3d()