Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

27 lines
912 B

import argparse
import json
import random
random.seed(42)
def sample(args):
with open(args.dataset_path, mode="r") as f:
dataset_list = json.load(f)
sampled_dataset = [
{"instruction": sample["instruction"], "id": idx}
for idx, sample in enumerate(random.sample(dataset_list, args.sample_size))
]
with open(args.save_path, mode="w") as f:
json.dump(sampled_dataset, f, indent=4, default=str, ensure_ascii=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_path", type=str, default=None, required=True, help="path to the pretrain dataset")
parser.add_argument("--save_path", type=str, default="prompt.json", help="path to save the prompt dataset")
parser.add_argument("--sample_size", type=int, default=16384, help="size of the prompt dataset")
args = parser.parse_args()
sample(args)