mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
229 lines
9.4 KiB
229 lines
9.4 KiB
import argparse
|
|
import resource
|
|
from contextlib import nullcontext
|
|
|
|
import torch
|
|
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload, MixedPrecision
|
|
from torch.optim import Adam
|
|
from tqdm import tqdm
|
|
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
|
|
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
|
|
|
import colossalai
|
|
|
|
# import colossalai.utils.device as device_utils
|
|
from colossalai.booster import Booster
|
|
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, TorchFSDPPlugin
|
|
from colossalai.cluster import DistCoordinator
|
|
from colossalai.lazy import LazyInitContext
|
|
from colossalai.utils import get_current_device
|
|
from examples.language.data_utils import RandomDataset
|
|
from examples.language.model_utils import format_numel_str, get_model_numel
|
|
from examples.language.performance_evaluator import PerformanceEvaluator
|
|
|
|
# ==============================
|
|
# Constants
|
|
# ==============================
|
|
MODEL_CONFIGS = {
|
|
"118M": GPT2Config(activation_function="gelu"),
|
|
"338M": GPT2Config(n_embd=1024, n_head=16, n_layer=24, activation_function="gelu"),
|
|
"738M": GPT2Config(n_embd=1280, n_head=20, n_layer=36, activation_function="gelu"),
|
|
"6.21B": GPT2Config(n_embd=4096, n_head=32, n_layer=32, n_positions=4096, activation_function="gelu"),
|
|
}
|
|
|
|
|
|
def main():
|
|
# ==============================
|
|
# Parse Arguments
|
|
# ==============================
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("-c", "--config", type=str, default="6.21B", help="Model configuration")
|
|
parser.add_argument(
|
|
"-p",
|
|
"--plugin",
|
|
choices=["gemini", "gemini_auto", "fsdp", "fsdp_cpu", "3d", "3d_cpu"],
|
|
default="gemini",
|
|
help="Choose which plugin to use",
|
|
)
|
|
parser.add_argument("-b", "--batch_size", type=int, default=2, help="Batch size")
|
|
parser.add_argument("-s", "--num_steps", type=int, default=200, help="Number of steps to run")
|
|
parser.add_argument("-i", "--ignore_steps", type=int, default=3, help="Number of steps to ignore")
|
|
parser.add_argument("-g", "--grad_checkpoint", action="store_true", help="Use gradient checkpointing")
|
|
parser.add_argument("-l", "--max_length", type=int, default=4096, help="Max sequence length")
|
|
parser.add_argument(
|
|
"-w", "--warmup_ratio", type=float, default=0.8, help="warm up ratio of non-model data. Only for gemini-auto"
|
|
)
|
|
parser.add_argument("-m", "--memory_limit", type=int, help="Gemini memory limit in mb")
|
|
parser.add_argument("--shard_param_frac", type=float, default=1.0, help="Shard param fraction. Only for gemini")
|
|
parser.add_argument("--offload_optim_frac", type=float, default=0.0, help="Offload optim fraction. Only for gemini")
|
|
parser.add_argument("--offload_param_frac", type=float, default=0.0, help="Offload param fraction. Only for gemini")
|
|
parser.add_argument("--tp", type=int, default=1, help="Tensor parallel size")
|
|
parser.add_argument("--extra_dp", type=int, default=1, help="Extra data parallel size, used for Gemini")
|
|
parser.add_argument("--pp", type=int, default=1, help="Pipeline parallel size")
|
|
parser.add_argument("--mbs", type=int, default=1)
|
|
parser.add_argument("--zero", type=int, default=0)
|
|
parser.add_argument("--pp_style", type=str, default="1f1b")
|
|
parser.add_argument("--num_model_chunks", type=int, default=2)
|
|
parser.add_argument("--cpu_offload", action="store_true", help="Use gradient checkpointing")
|
|
args = parser.parse_args()
|
|
|
|
colossalai.launch_from_torch()
|
|
coordinator = DistCoordinator()
|
|
|
|
def empty_init():
|
|
pass
|
|
|
|
# ==============================
|
|
# Initialize Booster
|
|
# ==============================
|
|
use_empty_init = True
|
|
if args.plugin == "gemini":
|
|
plugin = GeminiPlugin(
|
|
precision="bf16",
|
|
shard_param_frac=args.shard_param_frac,
|
|
offload_optim_frac=args.offload_optim_frac,
|
|
offload_param_frac=args.offload_param_frac,
|
|
tp_size=args.tp,
|
|
extra_dp_size=args.extra_dp,
|
|
)
|
|
elif args.plugin == "gemini_auto":
|
|
plugin = GeminiPlugin(
|
|
placement_policy="auto",
|
|
precision="bf16",
|
|
warmup_non_model_data_ratio=args.warmup_ratio,
|
|
tp_size=args.tp,
|
|
extra_dp_size=args.extra_dp,
|
|
)
|
|
elif args.plugin == "fsdp":
|
|
if use_empty_init:
|
|
plugin = TorchFSDPPlugin(
|
|
mixed_precision=MixedPrecision(
|
|
param_dtype=torch.float16, reduce_dtype=torch.float16, buffer_dtype=torch.float16
|
|
),
|
|
param_init_fn=empty_init(),
|
|
)
|
|
else:
|
|
plugin = TorchFSDPPlugin(
|
|
mixed_precision=MixedPrecision(
|
|
param_dtype=torch.float16, reduce_dtype=torch.float16, buffer_dtype=torch.float16
|
|
)
|
|
)
|
|
elif args.plugin == "fsdp_cpu":
|
|
if use_empty_init:
|
|
plugin = TorchFSDPPlugin(
|
|
mixed_precision=MixedPrecision(
|
|
param_dtype=torch.float16, reduce_dtype=torch.float16, buffer_dtype=torch.float16
|
|
),
|
|
cpu_offload=CPUOffload(offload_params=True),
|
|
param_init_fn=empty_init(),
|
|
)
|
|
else:
|
|
plugin = TorchFSDPPlugin(
|
|
mixed_precision=MixedPrecision(
|
|
param_dtype=torch.float16, reduce_dtype=torch.float16, buffer_dtype=torch.float16
|
|
),
|
|
cpu_offload=CPUOffload(offload_params=True),
|
|
)
|
|
elif args.plugin == "3d":
|
|
plugin = HybridParallelPlugin(
|
|
tp_size=args.tp,
|
|
pp_size=args.pp,
|
|
pp_style=args.pp_style,
|
|
zero_stage=args.zero,
|
|
num_model_chunks=args.num_model_chunks,
|
|
enable_all_optimization=True,
|
|
num_microbatches=args.mbs,
|
|
cpu_offload=args.cpu_offload,
|
|
precision="bf16",
|
|
)
|
|
elif args.plugin == "3d_cpu":
|
|
plugin = HybridParallelPlugin(
|
|
tp_size=args.tp,
|
|
pp_size=args.pp,
|
|
zero_stage=args.zero,
|
|
cpu_offload=True,
|
|
enable_fused_normalization=torch.cuda.is_available(),
|
|
num_microbatches=args.mbs,
|
|
initial_scale=2**8,
|
|
precision="bf16",
|
|
)
|
|
else:
|
|
raise ValueError(f"Unknown plugin {args.plugin}")
|
|
|
|
booster = Booster(plugin=plugin)
|
|
|
|
# ==============================
|
|
# Initialize Dataset and Dataloader
|
|
# ==============================
|
|
dp_size = plugin.dp_size if isinstance(plugin, HybridParallelPlugin) else coordinator.world_size
|
|
|
|
config = MODEL_CONFIGS[args.config]
|
|
dataset = RandomDataset(
|
|
num_samples=args.batch_size * args.num_steps * dp_size, max_length=args.max_length, vocab_size=config.vocab_size
|
|
)
|
|
dataloader = plugin.prepare_dataloader(dataset, batch_size=args.batch_size, shuffle=True, drop_last=True)
|
|
|
|
# ==============================
|
|
# Initialize Model and Optimizer
|
|
# ==============================
|
|
init_ctx = (
|
|
LazyInitContext(default_device=get_current_device())
|
|
if isinstance(plugin, (GeminiPlugin, HybridParallelPlugin))
|
|
else nullcontext()
|
|
)
|
|
|
|
with init_ctx:
|
|
model = GPT2LMHeadModel(config)
|
|
|
|
if args.grad_checkpoint:
|
|
model.gradient_checkpointing_enable()
|
|
|
|
model_numel = get_model_numel(model)
|
|
coordinator.print_on_master(f"Model params: {format_numel_str(model_numel)}")
|
|
performance_evaluator = PerformanceEvaluator(
|
|
model_numel,
|
|
model.config.n_layer,
|
|
model.config.n_embd,
|
|
model.config.vocab_size,
|
|
args.grad_checkpoint,
|
|
args.ignore_steps,
|
|
dp_world_size=dp_size,
|
|
)
|
|
|
|
optimizer = Adam(model.parameters())
|
|
torch.set_default_dtype(torch.bfloat16)
|
|
model, optimizer, _, dataloader, _ = booster.boost(model, optimizer, dataloader=dataloader)
|
|
torch.set_default_dtype(torch.float)
|
|
coordinator.print_on_master(f"Booster init max CUDA memory: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB")
|
|
coordinator.print_on_master(
|
|
f"Booster init max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024:.2f} MB"
|
|
)
|
|
|
|
if isinstance(plugin, HybridParallelPlugin) and args.pp > 1:
|
|
data_iter = iter(dataloader)
|
|
for step in tqdm(range(len(dataloader)), desc="Step", disable=not coordinator.is_master()):
|
|
performance_evaluator.on_step_start(step)
|
|
booster.execute_pipeline(
|
|
data_iter, model, criterion=lambda outputs, inputs: outputs[0], optimizer=optimizer, return_loss=False
|
|
)
|
|
optimizer.step()
|
|
optimizer.zero_grad()
|
|
performance_evaluator.on_step_end(input_ids=torch.empty(args.batch_size, args.max_length))
|
|
else:
|
|
for step, batch in enumerate(tqdm(dataloader, desc="Step", disable=not coordinator.is_master())):
|
|
performance_evaluator.on_step_start(step)
|
|
outputs = model(**batch)
|
|
loss = outputs[0]
|
|
booster.backward(loss, optimizer)
|
|
optimizer.step()
|
|
optimizer.zero_grad()
|
|
performance_evaluator.on_step_end(**batch)
|
|
coordinator.print_on_master(f"Max CUDA memory usage: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB")
|
|
|
|
performance_evaluator.on_fit_end()
|
|
coordinator.print_on_master(f"Max CUDA memory usage: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|