ColossalAI/colossalai/kernel/cuda_native/csrc/multihead_attention_1d.cpp

401 lines
16 KiB
C++

#include "multihead_attention_1d.h"
#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include <c10d/Types.hpp>
#include <iostream>
#include "context.h"
#include "kernels.h"
template <typename T>
MultiHeadAttention<T>::MultiHeadAttention(int layer_id, int max_batch_tokens,
int max_seq_len, int hidden_size,
int num_heads,
float attn_prob_dropout_ratio,
float hidden_output_dropout_ratio,
bool pre_or_postLayerNorm)
: _layer_id(layer_id),
_max_batch_tokens(max_batch_tokens),
_max_seq_len(max_seq_len),
_hidden_size(hidden_size),
_heads(num_heads),
_training(true),
_pre_or_postLayerNorm(pre_or_postLayerNorm),
_qkv_linear(
typename FeedForward<T>::Config(3 * hidden_size, hidden_size)),
_attn_out_linear(
typename FeedForward<T>::Config(hidden_size, hidden_size)),
_attn_ln(typename Normalize_Layer<T>::Config(hidden_size, false),
_max_batch_tokens),
_softmax(typename Softmax<T>::Config(num_heads)),
_attn_prob_dropout(typename Dropout<T>::Config(attn_prob_dropout_ratio),
_max_batch_tokens * _heads * _max_seq_len),
_attn_dropout(typename Dropout<T>::Config(hidden_output_dropout_ratio),
_max_batch_tokens * _hidden_size),
_attn_scores(typename StridedBatchGemm<T>::Config(
(T(1.0) / T(sqrt(_hidden_size / _heads))), T(0.0), CUBLAS_OP_T,
CUBLAS_OP_N)),
_attn_context(typename StridedBatchGemm<T>::Config(
T(1.0), T(0.0), CUBLAS_OP_N, CUBLAS_OP_N)) {
assert(_hidden_size % _heads == 0);
}
template <typename T>
MultiHeadAttention<T>::~MultiHeadAttention() {
free_mem_buffer();
}
template <typename T>
void MultiHeadAttention<T>::attn_layer_fw(const T *input_ptr,
const T *input_mask_ptr,
T *output_ptr, T *buffer) {
T *q_tf_ptr = _qkv_ptr;
T *k_tf_ptr = q_tf_ptr + _batch_dim / pg_size;
T *v_tf_ptr = k_tf_ptr + _batch_dim / pg_size;
if (_pre_or_postLayerNorm) {
_attn_ln.Forward(_gemmQKV_inp_ptr, input_ptr, _attn_nw_ptr, _attn_nb_ptr,
_batch_tokens, _stream);
}
const T *gemmQKV_inp_ptr =
_pre_or_postLayerNorm ? _gemmQKV_inp_ptr : input_ptr;
_qkv_linear.reset_size(3 * _hidden_size / pg_size, _hidden_size);
_qkv_linear.Forward(_batch_tokens, gemmQKV_inp_ptr, _attn_qkvw_ptr, buffer,
_cublasHandle);
launch_bias_add_transform_20314<T>(q_tf_ptr, buffer, _attn_qkvb_ptr,
_batch_size, _seq_len, 3, _heads / pg_size,
_hidden_size / _heads, _stream);
// attention scores, q*k
_attn_scores.Forward(_batch_heads, _soft_out_ptr, k_tf_ptr, q_tf_ptr,
_cublasHandle);
// Softmax + Mask
_softmax.reset_size(_heads / pg_size);
_softmax.Forward(_soft_out_ptr, input_mask_ptr, _batch_size, _seq_len,
_seq_len, _stream, true);
// attn prob dropout.
_attn_prob_dropout.dropout(_ctx_bufB_ptr, _soft_out_ptr,
_batch_heads * _seq_len * _seq_len, _stream);
// attention context, score * v
_attn_context.Forward(_batch_heads, buffer, v_tf_ptr, _ctx_bufB_ptr,
_cublasHandle);
// [b, nh, s, ad] -> [b, s, nh, ad]
launch_transform4d_0213<T>(_attn_o_inp_ptr, buffer, _batch_size, _seq_len,
_hidden_size / pg_size, _heads / pg_size, 1,
_stream);
_attn_out_linear.reset_size(_hidden_size, _hidden_size / pg_size);
_attn_out_linear.Forward(_batch_tokens, _attn_o_inp_ptr, _attn_ow_ptr,
output_ptr, _cublasHandle);
// allreduce
if (pg == c10::detail::UniqueVoidPtr() || pg->getSize() == 1) {
} else {
auto data_type = torch::kFloat;
if (typeid(T) != typeid(float)) {
data_type = torch::kHalf;
}
auto output_tensor = torch::from_blob(
output_ptr, {int(_batch_size), int(_seq_len), int(_hidden_size)},
torch::TensorOptions(torch::kCUDA).dtype(data_type));
std::vector<torch::Tensor> allreduce_tensors = {output_tensor};
auto work = pg->allreduce(allreduce_tensors, c10d::AllreduceOptions());
work->wait();
}
_attn_dropout.bias_dropout_residual(output_ptr, output_ptr, input_ptr,
_attn_ob_ptr, _batch_tokens, _hidden_size,
_stream);
if (!_pre_or_postLayerNorm) {
// in-place ln since ln-input will not be used in post-ln mode
_attn_ln.Forward(output_ptr, output_ptr, _attn_nw_ptr, _attn_nb_ptr,
_batch_tokens, _stream);
}
}
template <typename T>
void MultiHeadAttention<T>::Forward(const T *input_ptr, const T *input_mask_ptr,
T *out_ptr) {
_stream = Context::Instance().get_stream();
_cublasHandle = Context::Instance().get_cublashandle();
T *attn_buffer = _shared_mem_ptr; // 3 * _batch_dim
attn_layer_fw(input_ptr, input_mask_ptr, out_ptr, attn_buffer);
}
template <typename T>
void MultiHeadAttention<T>::attn_layer_bw(const T *input_ptr,
const T *input_mask_ptr,
const T *output_ptr,
const T *grad_output_ptr,
T *grad_input_ptr, T *buffer) {
cudaStream_t streams[2] = {_stream, _stream};
const T *q_tf_ptr = _qkv_ptr;
const T *k_tf_ptr = q_tf_ptr + _batch_dim / pg_size;
const T *v_tf_ptr = k_tf_ptr + _batch_dim / pg_size;
// batch_dim = batch_size * seq_len * hidden_size
// buffer size: batch_dim * 3 + max(batch_dim * 3,
// batch_size * head_num * seq_len * seq_len)
T *grad_residual_ptr = buffer;
buffer += _batch_dim;
T *grad_input_buf_ptr = buffer; // batch_dim
T *grad_qkv_5d_ptr = buffer; // batch_dim * 3
buffer += 3 * _batch_dim / pg_size;
T *grad_qkv_4d_ptr = buffer; // batch_dim * 3
T *grad_softmax_ptr = buffer; // batch_size * head_num * seq_len * seq_len
// buffer += max(3 * _batch_dim,
// batch_size * head_num * seq_len * seq_len);
if (_pre_or_postLayerNorm) {
_attn_dropout.d_bias_dropout_residual(grad_input_ptr, _grad_attn_ob_ptr,
grad_output_ptr, _batch_tokens,
_hidden_size, _stream);
} else {
_attn_ln.Backward(_grad_attn_nw_ptr, _grad_attn_nb_ptr, grad_residual_ptr,
grad_output_ptr, nullptr, output_ptr, _attn_nw_ptr,
_attn_nb_ptr, _batch_tokens, streams);
_attn_dropout.d_bias_dropout_residual(grad_input_ptr, _grad_attn_ob_ptr,
grad_residual_ptr, _batch_tokens,
_hidden_size, _stream);
}
// bw of output project
_attn_out_linear.reset_size(_hidden_size, _hidden_size / pg_size);
_attn_out_linear.Backward(_batch_tokens, grad_input_ptr, _attn_o_inp_ptr,
_attn_ow_ptr, _grad_attn_ow_ptr, _grad_attn_ob_ptr,
_cublasHandle, _stream, grad_input_buf_ptr, nullptr,
false);
launch_transform_0213<T>(grad_input_ptr, grad_input_buf_ptr, _batch_size,
_seq_len, _hidden_size / pg_size, _heads / pg_size,
_stream);
// bw of score * v
_attn_context.Backward(
_batch_heads, grad_input_ptr, v_tf_ptr, _ctx_bufB_ptr, _cublasHandle,
grad_qkv_5d_ptr + 2 * _batch_dim / pg_size, grad_softmax_ptr);
_attn_prob_dropout.d_dropout(grad_softmax_ptr,
_batch_heads * _seq_len * _seq_len, _stream);
_softmax.reset_size(_heads / pg_size);
_softmax.Backward(grad_softmax_ptr, _soft_out_ptr, _batch_size, _seq_len,
_seq_len, _stream);
// bw of q * k
_attn_scores.Backward(_batch_heads, grad_softmax_ptr, k_tf_ptr, q_tf_ptr,
_cublasHandle, grad_qkv_5d_ptr + _batch_dim / pg_size,
grad_qkv_5d_ptr);
// [3, b, nh, s, ad] -> [b, s, 3, h]
launch_transform4d_0213<T>(grad_qkv_4d_ptr, grad_qkv_5d_ptr, _batch_size,
_seq_len, _hidden_size / pg_size, _heads / pg_size,
3, _stream);
const T *gemmQKV_inp_ptr =
_pre_or_postLayerNorm ? _gemmQKV_inp_ptr : input_ptr;
_qkv_linear.reset_size(3 * _hidden_size / pg_size, _hidden_size);
_qkv_linear.Backward(_batch_tokens, grad_qkv_4d_ptr, gemmQKV_inp_ptr,
_attn_qkvw_ptr, _grad_attn_qkvw_ptr, _grad_attn_qkvb_ptr,
_cublasHandle, _stream, grad_input_buf_ptr, nullptr,
true);
// allreduce
if (pg == c10::detail::UniqueVoidPtr() || pg->getSize() == 1) {
} else {
auto data_type = torch::kFloat;
if (typeid(T) != typeid(float)) {
data_type = torch::kHalf;
}
auto grad_input_tensor =
torch::from_blob(grad_input_buf_ptr,
{int(_batch_size), int(_seq_len), int(_hidden_size)},
torch::TensorOptions(torch::kCUDA).dtype(data_type));
std::vector<torch::Tensor> allreduce_tensors = {grad_input_tensor};
auto work = pg->allreduce(allreduce_tensors, c10d::AllreduceOptions());
work->wait();
}
if (_pre_or_postLayerNorm) {
_attn_ln.Backward(_grad_attn_nw_ptr, _grad_attn_nb_ptr, grad_input_ptr,
grad_input_buf_ptr, grad_output_ptr, gemmQKV_inp_ptr,
_attn_nw_ptr, _attn_nb_ptr, _batch_tokens, streams);
} else {
// FIXME later
launch_fused_add2<T>(grad_input_ptr, grad_input_buf_ptr, grad_residual_ptr,
_batch_size, _seq_len, _hidden_size, _stream);
}
}
template <typename T>
void MultiHeadAttention<T>::Backward(const T *grad_output_ptr,
const T *input_ptr, const T *output_ptr,
const T *input_mask_ptr,
T *grad_input_ptr) {
_stream = Context::Instance().get_stream();
_cublasHandle = Context::Instance().get_cublashandle();
T *buffer = _shared_mem_ptr;
/*
buffer size needed by attn bw:
4 * _batch_dim + max(3 * _batch_dim,
_batch_size * _head_num * _seq_len * _seq_len);
*/
attn_layer_bw(input_ptr, input_mask_ptr, output_ptr, grad_output_ptr,
grad_input_ptr, buffer);
}
template <typename T>
void MultiHeadAttention<T>::SetTrainingMode(bool training) {
// Dropout will be skipped when not in training model.
_attn_prob_dropout.SetTrainingMode(training);
_attn_dropout.SetTrainingMode(training);
}
template <typename T>
T *MultiHeadAttention<T>::_shared_mem_ptr = nullptr;
template class MultiHeadAttention<float>;
template class MultiHeadAttention<__half>;
// x is torch::Tensor
#define CHECK_CUDA(x) AT_ASSERTM(x.is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) \
AT_ASSERTM(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) \
CHECK_CUDA(x); \
CHECK_CONTIGUOUS(x)
static std::unordered_map<int, std::shared_ptr<void>> s_multihead_attention;
template <typename T>
int create_multihead_attention(int layer_id, int max_batch_tokens,
int max_seq_len, int hidden_dim, int num_heads,
float attn_prob_dropout_ratio,
float hidden_dropout_ratio,
bool pre_or_postLayerNorm,
c10::intrusive_ptr<c10d::ProcessGroup> pg_) {
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
Context::Instance().set_stream(stream);
auto layer = std::make_shared<MultiHeadAttention<T>>(
layer_id, max_batch_tokens, max_seq_len, hidden_dim, num_heads,
attn_prob_dropout_ratio, hidden_dropout_ratio, pre_or_postLayerNorm);
layer->SetPG(pg_);
s_multihead_attention[layer_id] = layer;
std::string dtype = (std::is_same<T, __half>::value) ? "half" : "float";
return 0;
}
template <typename T>
std::vector<torch::Tensor> multihead_attention_fw(
int layer_id, const torch::Tensor &input, const torch::Tensor &input_mask,
const torch::Tensor &in_proj_weight, const torch::Tensor &in_proj_bias,
const torch::Tensor &out_proj_weight, const torch::Tensor &out_proj_bias,
const torch::Tensor &norm_weight, const torch::Tensor &norm_bias,
bool training_mode, bool prelayernorm) {
CHECK_INPUT(input);
CHECK_INPUT(input_mask);
const T *input_ptr = (const T *)input.data_ptr();
const T *input_mask_ptr = (const T *)input_mask.data_ptr();
auto output = torch::empty_like(input);
T *out_ptr = (T *)output.data_ptr();
std::shared_ptr<MultiHeadAttention<T>> layer =
std::static_pointer_cast<MultiHeadAttention<T>>(
s_multihead_attention[layer_id]);
layer->set_cur_batch_shape(input.size(0), input.size(1));
layer->SetTrainingMode(training_mode);
layer->_attn_qkvw_ptr = (const T *)in_proj_weight.data_ptr();
layer->_attn_qkvb_ptr = (const T *)in_proj_bias.data_ptr();
layer->_attn_ow_ptr = (const T *)out_proj_weight.data_ptr();
layer->_attn_ob_ptr = (const T *)out_proj_bias.data_ptr();
layer->_attn_nw_ptr = (const T *)norm_weight.data_ptr();
layer->_attn_nb_ptr = (const T *)norm_bias.data_ptr();
layer->Forward(input_ptr, input_mask_ptr, out_ptr);
return {output};
}
template <typename T>
std::vector<torch::Tensor> multihead_attention_bw(
int layer_id, const torch::Tensor &grad_dec_output,
const torch::Tensor &output, const torch::Tensor &input,
const torch::Tensor &input_mask, const torch::Tensor &in_proj_weight,
const torch::Tensor &in_proj_bias, const torch::Tensor &out_proj_weight,
const torch::Tensor &out_proj_bias, const torch::Tensor &norm_weight,
const torch::Tensor &norm_bias) {
auto g_output = grad_dec_output.contiguous();
CHECK_INPUT(g_output);
CHECK_INPUT(output);
CHECK_INPUT(input);
CHECK_INPUT(input_mask);
auto grad_input = torch::empty_like(input);
auto grad_in_proj_weight = torch::empty_like(in_proj_weight);
auto grad_in_proj_bias = torch::empty_like(in_proj_bias);
auto grad_out_proj_weight = torch::empty_like(out_proj_weight);
auto grad_out_proj_bias = torch::empty_like(out_proj_bias);
auto grad_norm_weight = torch::empty_like(norm_weight);
auto grad_norm_bias = torch::empty_like(norm_bias);
// inputs.
const T *grad_dec_output_ptr = (const T *)g_output.data_ptr();
const T *input_ptr = (const T *)input.data_ptr();
const T *output_ptr = (const T *)output.data_ptr();
const T *input_mask_ptr = (const T *)input_mask.data_ptr();
// outputs.
T *grad_input_ptr = (T *)grad_input.data_ptr();
std::shared_ptr<MultiHeadAttention<T>> layer =
std::static_pointer_cast<MultiHeadAttention<T>>(
s_multihead_attention[layer_id]);
layer->set_cur_batch_shape(g_output.size(0), g_output.size(1));
layer->_grad_attn_qkvw_ptr = (T *)grad_in_proj_weight.data_ptr();
layer->_grad_attn_qkvb_ptr = (T *)grad_in_proj_bias.data_ptr();
layer->_grad_attn_ow_ptr = (T *)grad_out_proj_weight.data_ptr();
layer->_grad_attn_ob_ptr = (T *)grad_out_proj_bias.data_ptr();
layer->_grad_attn_nw_ptr = (T *)grad_norm_weight.data_ptr();
layer->_grad_attn_nb_ptr = (T *)grad_norm_bias.data_ptr();
layer->Backward(grad_dec_output_ptr, input_ptr, output_ptr, input_mask_ptr,
grad_input_ptr);
return {grad_input, grad_in_proj_weight, grad_in_proj_bias,
grad_out_proj_weight, grad_out_proj_bias, grad_norm_weight,
grad_norm_bias};
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("multihead_attention_fw_fp32", &multihead_attention_fw<float>,
"Multi-head Attention forward with fp32 (CUDA)");
m.def("multihead_attention_fw_fp16", &multihead_attention_fw<__half>,
"Multi-head Attention forward with fp16 (CUDA)");
m.def("multihead_attention_bw_fp32", &multihead_attention_bw<float>,
"Multi-head Attention backward with fp32 (CUDA)");
m.def("multihead_attention_bw_fp16", &multihead_attention_bw<__half>,
"Multi-head Attention backward with fp16 (CUDA)");
m.def("create_multihead_attention_fp32", &create_multihead_attention<float>,
"Create Multi-head Attention with fp32 (CUDA)");
m.def("create_multihead_attention_fp16", &create_multihead_attention<__half>,
"Create Multi-head Attention with fp16 (CUDA)");
}