mirror of https://github.com/hpcaitech/ColossalAI
137 lines
4.9 KiB
Python
137 lines
4.9 KiB
Python
from typing import Callable
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.testing import assert_close
|
|
|
|
import colossalai
|
|
from colossalai.amp import convert_to_apex_amp
|
|
from colossalai.nn.optimizer import HybridAdam
|
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
|
from colossalai.utils.cuda import get_current_device
|
|
from colossalai.zero import GeminiDDP, GeminiOptimizer
|
|
from colossalai.zero.gemini.chunk import search_chunk_configuration
|
|
from tests.components_to_test import run_fwd_bwd
|
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
|
from tests.test_tensor.common_utils import set_seed
|
|
|
|
PLACEMENT_CONFIGS = [
|
|
{
|
|
'placement_policy': 'static',
|
|
'shard_param_frac': 0.0
|
|
}, # zero2
|
|
{
|
|
'placement_policy': 'static',
|
|
'shard_param_frac': 1.0
|
|
}, # zero3
|
|
{
|
|
'placement_policy': 'static',
|
|
'shard_param_frac': 0.5
|
|
}, # zero3-half
|
|
{
|
|
'placement_policy': 'auto'
|
|
}
|
|
]
|
|
|
|
|
|
def check_param(model: GeminiDDP, torch_model: torch.nn.Module):
|
|
zero_dict = model.state_dict(only_rank_0=False)
|
|
torch_dict = torch_model.state_dict()
|
|
|
|
for key, value in torch_dict.items():
|
|
# key is 'module.model.PARAMETER', so we truncate it
|
|
key = key[7:]
|
|
assert key in zero_dict, "{} not in ZeRO dictionary.".format(key)
|
|
temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype)
|
|
# debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value)))
|
|
assert_close(value, temp_zero_value, rtol=1e-3, atol=4e-3)
|
|
|
|
|
|
def multi_chunk_init(model: torch.nn.Module, placement_config: dict):
|
|
world_size = dist.get_world_size()
|
|
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
|
|
config_dict[world_size]['chunk_size'] = 5000
|
|
config_dict[world_size]['keep_gathered'] = False
|
|
model = GeminiDDP(model, config_dict, pin_memory=True, **placement_config)
|
|
return model
|
|
|
|
|
|
def single_chunk_init(model: torch.nn.Module, placement_config: dict):
|
|
model = GeminiDDP(model, chunk_init_device=get_current_device(), pin_memory=True, **placement_config)
|
|
return model
|
|
|
|
|
|
@parameterize('placement_config', PLACEMENT_CONFIGS)
|
|
@parameterize('model_name', ['gpt2'])
|
|
@parameterize('model_init_func', [single_chunk_init, multi_chunk_init])
|
|
def exam_inference(placement_config: dict, model_name: str, model_init_func: Callable):
|
|
set_seed(19360226)
|
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
|
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
|
|
|
torch_model = model_builder().cuda()
|
|
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=128)
|
|
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
|
|
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
|
torch_model = DDP(torch_model, device_ids=[dist.get_rank()])
|
|
init_dev = get_current_device()
|
|
model = model_builder().to(init_dev)
|
|
|
|
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
|
p.data.copy_(torch_p.data)
|
|
|
|
model = model_init_func(model, placement_config)
|
|
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
|
zero_optim = GeminiOptimizer(optimizer, model, initial_scale=128)
|
|
|
|
model.eval()
|
|
torch_model.eval()
|
|
|
|
set_seed(dist.get_rank() * 3 + 128)
|
|
train_dataloader = iter(train_dataloader)
|
|
|
|
def train_iter():
|
|
input_ids, label = next(train_dataloader)
|
|
input_ids, label = input_ids.cuda(), label.cuda()
|
|
zero_optim.zero_grad()
|
|
torch_optim.zero_grad()
|
|
torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim)
|
|
loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim)
|
|
assert_close(torch_loss, loss, rtol=1e-5, atol=1e-5)
|
|
zero_optim.step()
|
|
torch_optim.step()
|
|
check_param(model, torch_model)
|
|
|
|
def inference_iter():
|
|
input_ids, label = next(train_dataloader)
|
|
input_ids, label = input_ids.cuda(), label.cuda()
|
|
with torch.no_grad():
|
|
torch_output = torch_model(input_ids)
|
|
torch_loss = criterion(torch_output.float(), label)
|
|
zero_output = model(input_ids)
|
|
zero_loss = criterion(zero_output.float(), label)
|
|
assert_close(torch_loss, zero_loss)
|
|
|
|
train_iter()
|
|
inference_iter()
|
|
train_iter()
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
config = {}
|
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
exam_inference()
|
|
|
|
|
|
@pytest.mark.dist
|
|
@pytest.mark.parametrize('world_size', [1, 4])
|
|
@rerun_if_address_is_in_use()
|
|
def test_inference(world_size):
|
|
spawn(run_dist, world_size)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_inference(1)
|