mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
121 lines
4.7 KiB
121 lines
4.7 KiB
from typing import Callable |
|
|
|
import pytest |
|
import torch |
|
import torch.distributed as dist |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
from torch.testing import assert_close |
|
|
|
import colossalai |
|
from colossalai.legacy.amp import convert_to_apex_amp |
|
from colossalai.nn.optimizer import HybridAdam |
|
from colossalai.testing import DummyDataloader, parameterize, rerun_if_address_is_in_use, spawn |
|
from colossalai.utils import set_seed |
|
from colossalai.utils.device import get_current_device |
|
from colossalai.zero import GeminiDDP, GeminiOptimizer |
|
from colossalai.zero.gemini.chunk import search_chunk_configuration |
|
from tests.kit.model_zoo import model_zoo, run_fwd, run_fwd_bwd |
|
|
|
PLACEMENT_CONFIGS = [ |
|
{"placement_policy": "static", "shard_param_frac": 0.0}, # zero2 |
|
{"placement_policy": "static", "shard_param_frac": 1.0}, # zero3 |
|
{"placement_policy": "static", "shard_param_frac": 0.5}, # zero3-half |
|
{"placement_policy": "auto"}, |
|
] |
|
|
|
|
|
def check_param(model: GeminiDDP, torch_model: torch.nn.Module): |
|
zero_dict = model.state_dict(only_rank_0=False) |
|
torch_dict = torch_model.state_dict() |
|
|
|
for key, value in torch_dict.items(): |
|
# key is 'module.model.PARAMETER', so we truncate it |
|
key = key[7:] |
|
assert key in zero_dict, "{} not in ZeRO dictionary.".format(key) |
|
temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype) |
|
# debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value))) |
|
assert_close(value, temp_zero_value, rtol=1e-3, atol=4e-3) |
|
|
|
|
|
def multi_chunk_init(model: torch.nn.Module, placement_config: dict): |
|
world_size = dist.get_world_size() |
|
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100) |
|
config_dict[world_size]["chunk_size"] = 5000 |
|
config_dict[world_size]["keep_gathered"] = False |
|
model = GeminiDDP(model, config_dict, pin_memory=True, **placement_config) |
|
return model |
|
|
|
|
|
def single_chunk_init(model: torch.nn.Module, placement_config: dict): |
|
model = GeminiDDP(model, chunk_init_device=get_current_device(), pin_memory=True, **placement_config) |
|
return model |
|
|
|
|
|
@parameterize("placement_config", PLACEMENT_CONFIGS) |
|
@parameterize("model_name", ["transformers_gpt_lm"]) |
|
@parameterize("model_init_func", [single_chunk_init, multi_chunk_init]) |
|
def exam_inference(placement_config: dict, model_name: str, model_init_func: Callable): |
|
set_seed(19360226) |
|
model_builder, data_gen_fn, output_transform_fn, *_ = next(iter(model_zoo.get_sub_registry(model_name).values())) |
|
|
|
torch_model = model_builder().cuda() |
|
amp_config = dict(opt_level="O2", keep_batchnorm_fp32=False, loss_scale=128) |
|
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) |
|
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) |
|
torch_model = DDP(torch_model, device_ids=[dist.get_rank()]) |
|
init_dev = get_current_device() |
|
model = model_builder().to(init_dev) |
|
|
|
for torch_p, p in zip(torch_model.parameters(), model.parameters()): |
|
p.data.copy_(torch_p.data) |
|
|
|
model = model_init_func(model, placement_config) |
|
optimizer = HybridAdam(model.parameters(), lr=1e-3) |
|
zero_optim = GeminiOptimizer(optimizer, model, initial_scale=128) |
|
|
|
model.eval() |
|
torch_model.eval() |
|
|
|
set_seed(dist.get_rank() * 3 + 128) |
|
train_dataloader = iter(DummyDataloader(data_gen_fn)) |
|
|
|
def train_iter(): |
|
data = next(train_dataloader) |
|
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()} |
|
zero_optim.zero_grad() |
|
torch_optim.zero_grad() |
|
torch_loss = run_fwd_bwd(torch_model, data, output_transform_fn, optimizer=torch_optim) |
|
loss = run_fwd_bwd(model, data, output_transform_fn, optimizer=zero_optim) |
|
assert_close(torch_loss.float(), loss.float(), rtol=1e-5, atol=1e-5) |
|
zero_optim.step() |
|
torch_optim.step() |
|
check_param(model, torch_model) |
|
|
|
def inference_iter(): |
|
data = next(train_dataloader) |
|
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()} |
|
with torch.no_grad(): |
|
torch_loss = run_fwd(torch_model, data, output_transform_fn) |
|
zero_loss = run_fwd(model, data, output_transform_fn) |
|
assert_close(torch_loss.float(), zero_loss.float(), rtol=1e-5, atol=1e-5) |
|
|
|
train_iter() |
|
inference_iter() |
|
train_iter() |
|
|
|
|
|
def run_dist(rank, world_size, port): |
|
config = {} |
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") |
|
exam_inference() |
|
|
|
|
|
@pytest.mark.dist |
|
@pytest.mark.parametrize("world_size", [1, 4]) |
|
@rerun_if_address_is_in_use() |
|
def test_inference(world_size): |
|
spawn(run_dist, world_size) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_inference(1)
|
|
|