Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

153 lines
5.6 KiB

import pytest
import torch
import torch.distributed as dist
from apex import amp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing import assert_close
import colossalai
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import DummyDataloader, parameterize, rerun_if_address_is_in_use, spawn
from colossalai.utils import set_seed
from colossalai.utils.device import get_current_device
from colossalai.zero import GeminiDDP, GeminiOptimizer
from colossalai.zero.gemini.chunk import search_chunk_configuration
from tests.kit.model_zoo import model_zoo, run_fwd
PLACEMENT_CONFIGS = [
{"placement_policy": "static", "shard_param_frac": 0.0}, # zero2
{"placement_policy": "static", "shard_param_frac": 1.0}, # zero3
{"placement_policy": "static", "shard_param_frac": 0.5}, # zero3-half
{"placement_policy": "auto"},
]
def check_grad(model: GeminiDDP, torch_model: torch.nn.Module):
chunk_manager = model.chunk_manager
grad_chunk_list = []
device_list = []
# Access gradient chunks.
for p in model.parameters():
grad_chunk = chunk_manager.get_chunk(p).grad_chunk
if grad_chunk not in grad_chunk_list:
chunk_manager.access_chunk(grad_chunk)
grad_chunk_list.append(grad_chunk)
device_list.append(model.grads_device[p])
# Compare gradients.
for p0, p1 in zip(model.parameters(), torch_model.parameters()):
assert_close(p0, p1.grad, rtol=2e-3, atol=2e-2)
# Release gradient chunks and move them to gradient device.
for grad_chunk, device in zip(grad_chunk_list, device_list):
chunk_manager.release_chunk(grad_chunk)
chunk_manager.move_chunk(grad_chunk, device, force_copy=True)
@parameterize("placement_config", PLACEMENT_CONFIGS)
@parameterize("keep_gathered", [False, True])
@parameterize("model_name", ["transformers_gpt_lm"])
@parameterize("master_weights", [False, True])
@parameterize("use_grad_checkpoint", [False, True])
def exam_gemini_grad_acc(
placement_config, keep_gathered: bool, model_name: str, master_weights: bool, use_grad_checkpoint: bool
):
init_device = get_current_device()
model_builder, data_gen_fn, output_transform_fn, loss_fn, *_ = next(
iter(model_zoo.get_sub_registry(model_name).values())
)
set_seed(42)
gemini_model = model_builder()
set_seed(42)
torch_model = model_builder().cuda()
for torch_p, p in zip(torch_model.parameters(), gemini_model.parameters()):
torch_p.data.copy_(p.data)
if use_grad_checkpoint:
gemini_model.gradient_checkpointing_enable()
torch_model.gradient_checkpointing_enable()
world_size = torch.distributed.get_world_size()
config_dict, *_ = search_chunk_configuration(gemini_model, search_range_m=1, search_interval=100)
config_dict[world_size]["chunk_size"] = 5000
config_dict[world_size]["keep_gathered"] = keep_gathered
gemini_model = GeminiDDP(
gemini_model,
config_dict,
init_device,
pin_memory=True,
enable_gradient_accumulation=True,
master_weights=master_weights,
**placement_config,
)
optimizer = HybridAdam(gemini_model.parameters(), lr=1e-3)
gemini_optim = GeminiOptimizer(optimizer, gemini_model, initial_scale=1, max_norm=1.0)
rank = dist.get_rank()
# setting master_weights to False will cause overflow after optimizer.step()
amp_config = dict(
opt_level="O2", keep_batchnorm_fp32=False, loss_scale=1, min_loss_scale=1, max_loss_scale=1, master_weights=True
)
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
torch_model, torch_optim = amp.initialize(torch_model, torch_optim, **amp_config)
torch_model = DDP(torch_model, device_ids=[rank])
set_seed(rank)
accum_iter = 4
train_dataloader = DummyDataloader(data_gen_fn)
for i, data in enumerate(train_dataloader):
delay_unscale = False if (i + 1) % accum_iter == 0 else True
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
set_seed(42 + rank)
torch_loss = run_fwd(torch_model, data, output_transform_fn, loss_fn)
torch_loss = torch_loss / accum_iter
with amp.scale_loss(torch_loss, torch_optim, delay_unscale=delay_unscale) as scaled_loss:
scaled_loss.backward()
set_seed(42 + rank)
gemini_loss = run_fwd(gemini_model, data, output_transform_fn, loss_fn)
gemini_loss = gemini_loss / accum_iter
gemini_optim.backward(gemini_loss)
assert torch.allclose(torch_loss.float(), gemini_loss.float(), rtol=1e-3, atol=1e-5)
check_grad(gemini_model, torch_model)
if (i + 1) % accum_iter == 0:
torch.nn.utils.clip_grad_norm_(amp.master_params(torch_optim), 1.0)
torch_optim.step()
gemini_optim.step()
torch_optim.zero_grad()
# check updated param
torch_dict = torch_model.state_dict()
gemini_dict = gemini_model.state_dict(only_rank_0=False)
for key, value in gemini_dict.items():
torch_key = "module." + key
torch_value = torch_dict[torch_key].to(value.device).to(value.dtype)
assert_close(value, torch_value, rtol=1e-3, atol=2e-3)
if i == accum_iter:
break
def run_dist(rank, world_size, port):
config = {}
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
exam_gemini_grad_acc()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_grad_accumulation():
spawn(run_dist, 2)
if __name__ == "__main__":
test_grad_accumulation()