Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

105 lines
3.8 KiB

import pytest
import torch
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import LowLevelZeroPlugin
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel
from colossalai.moe.manager import MOE_MANAGER
from colossalai.testing import rerun_if_address_is_in_use, spawn
from colossalai.testing.random import seed_all
from tests.test_moe.moe_utils import MoeGradientHandler, MoeModel
def split_ddp_grad(grad, world_size):
with torch.no_grad():
grad = grad.clone().detach().flatten()
padding_size = (world_size - grad.numel() % world_size) % world_size
if padding_size > 0:
grad = torch.nn.functional.pad(grad, [0, padding_size])
splited_grad = grad.split(grad.numel() // world_size)
return splited_grad
def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False):
model.train()
with torch.cuda.amp.autocast(enabled=enable_autocast):
if criterion:
y = model(data)
loss = criterion(y, label)
else:
loss = model(data, label)
loss = loss.float()
if isinstance(model, LowLevelZeroModel):
optimizer.backward(loss)
else:
loss.backward()
return y
def run_zero_test(local_rank, world_size, stage=1):
criterion = torch.nn.CrossEntropyLoss()
zero_model = MoeModel()
optimizer = torch.optim.Adam(zero_model.parameters())
plugin = LowLevelZeroPlugin(stage=stage, precision="fp32")
booster = Booster(plugin=plugin)
zero_model, optimizer, _, _, _ = booster.boost(zero_model, optimizer)
torch_model = MoeModel()
for zero_param, torch_param in zip(zero_model.parameters(), torch_model.parameters()):
torch_param.data.copy_(zero_param.data)
torch_model = torch_model.cuda()
grad_handler = MoeGradientHandler(torch_model)
# assert zero model
for (torch_name, torch_param), (zero_name, zero_param) in zip(
torch_model.named_parameters(), zero_model.module.named_parameters()
):
assert zero_name == torch_name
assert torch.allclose(zero_param.data, torch_param.data)
data = torch.randn(16, 4).cuda()
label = torch.randint(0, 4, (16,)).cuda()
torch_out = run_fwd_bwd(torch_model, data, label, criterion, None)
zero_out = run_fwd_bwd(zero_model, data, label, criterion, optimizer)
assert torch.allclose(torch_out, zero_out)
grad_handler.handle_gradient()
for (zero_name, zero_param), (torch_name, torch_param) in zip(
zero_model.module.named_parameters(), torch_model.named_parameters()
):
assert zero_name == torch_name
zero_grad_list = optimizer._grad_store.get_partitioned_gradients_by_param_id(0, id(zero_param))
if hasattr(zero_param, "moe_info"):
assert len(zero_grad_list) == 0
assert torch.allclose(zero_param.grad, torch_param.grad)
else:
assert len(zero_grad_list) > 0
torch_grad_list = split_ddp_grad(torch_param.grad, world_size)
if stage == 2:
torch_grad_list = torch_grad_list[local_rank : local_rank + 1]
assert len(zero_grad_list) == len(torch_grad_list)
for zero_grad, torch_grad in zip(zero_grad_list, torch_grad_list):
assert torch.allclose(zero_grad, torch_grad)
def run_dist(rank, world_size, port):
colossalai.launch(config=dict(), rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
MOE_MANAGER.setup(parallel="EP")
seed_all(42 + rank)
run_zero_test(rank, world_size, stage=1)
run_zero_test(rank, world_size, stage=2)
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2])
@rerun_if_address_is_in_use()
def test_moe_zero_model(world_size):
spawn(run_dist, world_size)
if __name__ == "__main__":
test_moe_zero_model(world_size=2)