mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
105 lines
3.8 KiB
105 lines
3.8 KiB
import pytest |
|
import torch |
|
|
|
import colossalai |
|
from colossalai.booster import Booster |
|
from colossalai.booster.plugin import LowLevelZeroPlugin |
|
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel |
|
from colossalai.moe.manager import MOE_MANAGER |
|
from colossalai.testing import rerun_if_address_is_in_use, spawn |
|
from colossalai.testing.random import seed_all |
|
from tests.test_moe.moe_utils import MoeGradientHandler, MoeModel |
|
|
|
|
|
def split_ddp_grad(grad, world_size): |
|
with torch.no_grad(): |
|
grad = grad.clone().detach().flatten() |
|
padding_size = (world_size - grad.numel() % world_size) % world_size |
|
if padding_size > 0: |
|
grad = torch.nn.functional.pad(grad, [0, padding_size]) |
|
splited_grad = grad.split(grad.numel() // world_size) |
|
return splited_grad |
|
|
|
|
|
def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False): |
|
model.train() |
|
with torch.cuda.amp.autocast(enabled=enable_autocast): |
|
if criterion: |
|
y = model(data) |
|
loss = criterion(y, label) |
|
else: |
|
loss = model(data, label) |
|
loss = loss.float() |
|
|
|
if isinstance(model, LowLevelZeroModel): |
|
optimizer.backward(loss) |
|
else: |
|
loss.backward() |
|
return y |
|
|
|
|
|
def run_zero_test(local_rank, world_size, stage=1): |
|
criterion = torch.nn.CrossEntropyLoss() |
|
|
|
zero_model = MoeModel() |
|
optimizer = torch.optim.Adam(zero_model.parameters()) |
|
plugin = LowLevelZeroPlugin(stage=stage, precision="fp32") |
|
booster = Booster(plugin=plugin) |
|
zero_model, optimizer, _, _, _ = booster.boost(zero_model, optimizer) |
|
|
|
torch_model = MoeModel() |
|
for zero_param, torch_param in zip(zero_model.parameters(), torch_model.parameters()): |
|
torch_param.data.copy_(zero_param.data) |
|
torch_model = torch_model.cuda() |
|
grad_handler = MoeGradientHandler(torch_model) |
|
|
|
# assert zero model |
|
for (torch_name, torch_param), (zero_name, zero_param) in zip( |
|
torch_model.named_parameters(), zero_model.module.named_parameters() |
|
): |
|
assert zero_name == torch_name |
|
assert torch.allclose(zero_param.data, torch_param.data) |
|
|
|
data = torch.randn(16, 4).cuda() |
|
label = torch.randint(0, 4, (16,)).cuda() |
|
|
|
torch_out = run_fwd_bwd(torch_model, data, label, criterion, None) |
|
zero_out = run_fwd_bwd(zero_model, data, label, criterion, optimizer) |
|
assert torch.allclose(torch_out, zero_out) |
|
grad_handler.handle_gradient() |
|
|
|
for (zero_name, zero_param), (torch_name, torch_param) in zip( |
|
zero_model.module.named_parameters(), torch_model.named_parameters() |
|
): |
|
assert zero_name == torch_name |
|
zero_grad_list = optimizer._grad_store.get_partitioned_gradients_by_param_id(0, id(zero_param)) |
|
if hasattr(zero_param, "moe_info"): |
|
assert len(zero_grad_list) == 0 |
|
assert torch.allclose(zero_param.grad, torch_param.grad) |
|
else: |
|
assert len(zero_grad_list) > 0 |
|
torch_grad_list = split_ddp_grad(torch_param.grad, world_size) |
|
if stage == 2: |
|
torch_grad_list = torch_grad_list[local_rank : local_rank + 1] |
|
assert len(zero_grad_list) == len(torch_grad_list) |
|
for zero_grad, torch_grad in zip(zero_grad_list, torch_grad_list): |
|
assert torch.allclose(zero_grad, torch_grad) |
|
|
|
|
|
def run_dist(rank, world_size, port): |
|
colossalai.launch(config=dict(), rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") |
|
MOE_MANAGER.setup(parallel="EP") |
|
seed_all(42 + rank) |
|
run_zero_test(rank, world_size, stage=1) |
|
run_zero_test(rank, world_size, stage=2) |
|
|
|
|
|
@pytest.mark.dist |
|
@pytest.mark.parametrize("world_size", [2]) |
|
@rerun_if_address_is_in_use() |
|
def test_moe_zero_model(world_size): |
|
spawn(run_dist, world_size) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_moe_zero_model(world_size=2)
|
|
|