Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

219 lines
6.5 KiB

import importlib
import os
import shutil
import sys
import pytest
import torch
import torch.distributed as dist
from transformers.models.llama import LlamaConfig
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
from colossalai.moe.manager import MOE_MANAGER
from colossalai.testing import DummyDataloader, check_state_dict_equal, rerun_if_address_is_in_use, spawn
from colossalai.utils import get_current_device
sys.path.append(
os.path.join(
os.path.dirname(os.path.dirname(os.path.dirname(__file__))),
"examples/language/openmoe",
)
)
OpenMoeForCausalLM = importlib.import_module("model.modeling_openmoe").OpenMoeForCausalLM
set_openmoe_args = importlib.import_module("model.modeling_openmoe").set_openmoe_args
OpenMoeForCausalLMPolicy = importlib.import_module("model.openmoe_policy").OpenMoeForCausalLMPolicy
def data_gen_fn(batch_size: int = 2, max_length: int = 4, vocab_size: int = 20):
input_ids = torch.randint(0, vocab_size, (batch_size, max_length), device=get_current_device())
attention_mask = torch.ones_like(input_ids)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": input_ids,
}
def run_fwd_bwd(
model, data, label, criterion, optimizer, enable_autocast=False, pipeline=False, booster=None, plugin=None
):
model.train()
if pipeline:
train_dataloader_iter = DummyDataloader(data_gen_fn, length=1)
is_pp_last_stage = booster.plugin.stage_manager.is_last_stage()
y = booster.execute_pipeline(
train_dataloader_iter,
model,
lambda x, y: x.loss,
optimizer,
return_loss=True,
return_outputs=True,
)
# Backward and optimize
if is_pp_last_stage:
loss = y["loss"]
else:
if criterion:
y = model(data).logits
loss = criterion(y)
else:
loss = model(data, label)
loss = loss.float()
if optimizer is not None:
optimizer.backward(loss)
else:
loss.backward()
return y
def get_config():
config = LlamaConfig(
vocab_size=300,
hidden_size=16,
intermediate_size=32,
num_hidden_layers=2,
num_attention_heads=2,
head_dim=4,
dropout_rate=0.0,
hidden_act="swiglu",
)
set_openmoe_args(config, num_experts=8, moe_layer_interval=1)
return config
def get_model(parallel):
config = get_config()
model = OpenMoeForCausalLM(config)
optim = torch.optim.Adam(model.parameters())
if parallel == None:
plugin = MoeHybridParallelPlugin(
precision="bf16",
tp_size=1,
pp_size=1,
zero_stage=2,
custom_policy=OpenMoeForCausalLMPolicy(),
)
elif parallel == "ep":
plugin = MoeHybridParallelPlugin(
precision="bf16",
tp_size=1,
pp_size=1,
zero_stage=2,
custom_policy=OpenMoeForCausalLMPolicy(),
)
elif parallel == "ep_zero":
plugin = MoeHybridParallelPlugin(
precision="bf16",
tp_size=1,
pp_size=1,
zero_stage=2,
extra_dp_size=2,
custom_policy=OpenMoeForCausalLMPolicy(),
)
elif parallel == "hybrid":
plugin = MoeHybridParallelPlugin(
precision="bf16",
tp_size=1,
pp_size=2,
zero_stage=1,
microbatch_size=1,
custom_policy=OpenMoeForCausalLMPolicy(),
)
booster = Booster(plugin=plugin)
model, optim, _, _, _ = booster.boost(model=model, optimizer=optim)
return model, booster, optim
def _test_moe_checkpoint(rank, parallel):
if parallel == None:
MOE_MANAGER.setup(
parallel=None,
)
elif parallel == "ep":
MOE_MANAGER.setup(
parallel="EP",
)
elif parallel == "ep_zero":
MOE_MANAGER.setup(
parallel="EP",
max_ep_size=2,
)
elif parallel == "hybrid":
MOE_MANAGER.setup(
parallel="EP",
mode="fixed",
fixed_dp_size=1,
fixed_ep_size=2,
fixed_pp_size=2,
)
model1, booster1, optim1 = get_model(parallel)
model2, booster2, optim2 = get_model(parallel)
model3, booster3, optim3 = get_model(parallel)
# param ckpt
# shard
booster1.save_model(model1, "./tmp_ckpt1", shard=True, size_per_shard=1)
booster2.load_model(model2, "./tmp_ckpt1")
# unshard
booster1.save_model(model1, "./tmp_ckpt1.pth")
booster3.load_model(model3, "./tmp_ckpt1.pth")
# check
check_state_dict_equal(model1.state_dict(), model2.state_dict(), False)
check_state_dict_equal(model1.state_dict(), model3.state_dict(), False)
# optim ckpt
criterion = lambda x: x.mean()
data = torch.randint(0, 4, (2, 4)).cuda()
label = torch.randint(0, 4, (2,)).cuda()
if parallel == "hybrid":
kwargs = {"pipeline": True, "booster": booster1, "plugin": booster1.plugin}
else:
kwargs = {}
run_fwd_bwd(model1, data, label, criterion, optim1, **kwargs)
optim1.step()
optim1.zero_grad()
# shard
booster1.save_optimizer(optim1, "./tmp_ckpt2", shard=True, size_per_shard=1)
dist.barrier()
booster2.load_optimizer(optim2, "./tmp_ckpt2")
# unshard
booster1.save_optimizer(optim1, "./tmp_ckpt2.pth")
booster3.load_optimizer(optim3, "./tmp_ckpt2.pth")
# check
check_state_dict_equal(optim1.optim.state_dict(), optim2.optim.state_dict(), False)
check_state_dict_equal(optim1.optim.state_dict(), optim3.optim.state_dict(), False)
if dist.get_rank() == 0:
shutil.rmtree("./tmp_ckpt1")
shutil.rmtree("./tmp_ckpt2")
os.remove("./tmp_ckpt1.pth")
os.remove("./tmp_ckpt2.pth")
def _run_dist(rank, world_size, port, parallel):
colossalai.launch(
config=dict(),
rank=rank,
world_size=world_size,
host="localhost",
port=port,
backend="nccl",
)
_test_moe_checkpoint(rank, parallel)
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [4])
@pytest.mark.parametrize("parallel", [None, "ep", "ep_zero", "hybrid"])
@rerun_if_address_is_in_use()
def test_moe_checkpoint(world_size, parallel):
spawn(_run_dist, world_size, parallel=parallel)
if __name__ == "__main__":
test_moe_checkpoint(world_size=4, parallel="hybrid")