You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/shardformer/policies/bloom.py

412 lines
16 KiB

from functools import partial
from typing import Callable, Dict, List
import torch.nn as nn
from torch import Tensor
from torch.nn import Module
import colossalai.shardformer.layer as col_nn
from ..modeling.bloom import (
BloomPipelineForwards,
build_bloom_alibi_tensor_fn,
get_bloom_flash_attention_forward,
get_bloom_sequence_parallel_forward_fn,
get_jit_fused_bloom_attention_forward,
get_jit_fused_bloom_gelu_forward,
get_jit_fused_bloom_mlp_forward,
)
from ..modeling.jit import get_dropout_add_func, get_jit_fused_dropout_add_func, get_jit_fused_gelu_forward_func
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
class BloomPolicy(Policy):
def __init__(self) -> None:
super().__init__()
import transformers
from packaging.version import Version
assert Version(transformers.__version__) <= Version(
"4.33.0"
), "The Bloom model should run on a transformers version not greater than 4.33.0."
def config_sanity_check(self):
pass
def preprocess(self):
# reshape the embedding layer
r"""
Reshape the Embedding layer to make the embedding dimension divisible by world_size
"""
if self.shard_config.enable_tensor_parallelism:
vocab_size = self.model.config.vocab_size
world_size = self.shard_config.tensor_parallel_size
if vocab_size % world_size != 0:
new_vocab_size = vocab_size + world_size - vocab_size % world_size
self.model.resize_token_embeddings(new_vocab_size)
return self.model
def module_policy(self):
from transformers.models.bloom.modeling_bloom import BloomAttention, BloomBlock, BloomGelu, BloomMLP, BloomModel
policy = {}
if self.shard_config.enable_fused_normalization:
norm_cls = col_nn.FusedLayerNorm
else:
norm_cls = col_nn.LayerNorm
use_sequence_parallel = self.shard_config.enable_sequence_parallelism
overlap = self.shard_config.enable_sequence_overlap
if self.shard_config.enable_tensor_parallelism:
policy[BloomBlock] = ModulePolicyDescription(
attribute_replacement={
"self_attention.hidden_size": self.model.config.hidden_size
// self.shard_config.tensor_parallel_size,
"self_attention.split_size": self.model.config.hidden_size
// self.shard_config.tensor_parallel_size,
"self_attention.num_heads": self.model.config.n_head // self.shard_config.tensor_parallel_size,
},
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="self_attention.query_key_value",
target_module=col_nn.Linear1D_Col,
kwargs={"seq_parallel": use_sequence_parallel, "overlap": overlap},
),
SubModuleReplacementDescription(
suffix="self_attention.dense",
target_module=col_nn.Linear1D_Row,
kwargs={"seq_parallel": use_sequence_parallel},
),
SubModuleReplacementDescription(
suffix="self_attention.attention_dropout",
target_module=col_nn.DropoutForParallelInput,
),
SubModuleReplacementDescription(
suffix="mlp.dense_h_to_4h",
target_module=col_nn.Linear1D_Col,
kwargs={"seq_parallel": use_sequence_parallel, "overlap": overlap},
),
SubModuleReplacementDescription(
suffix="mlp.dense_4h_to_h",
target_module=col_nn.Linear1D_Row,
kwargs={"seq_parallel": use_sequence_parallel},
),
],
)
policy[BloomModel] = ModulePolicyDescription(
attribute_replacement={
"num_heads": self.model.config.n_head // self.shard_config.tensor_parallel_size,
},
method_replacement={
"build_alibi_tensor": build_bloom_alibi_tensor_fn(self.shard_config.tensor_parallel_process_group)
},
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="word_embeddings",
target_module=col_nn.VocabParallelEmbedding1D,
)
],
)
# optimization configuration
# handle bloom model
self.append_or_create_submodule_replacement(
description=[
SubModuleReplacementDescription(
suffix="ln_f",
target_module=norm_cls,
),
SubModuleReplacementDescription(
suffix="word_embeddings_layernorm",
target_module=norm_cls,
),
],
policy=policy,
target_key=BloomModel,
)
# handle bloom block
self.append_or_create_submodule_replacement(
description=[
SubModuleReplacementDescription(
suffix="input_layernorm",
target_module=norm_cls,
kwargs={"sp_partial_derived": use_sequence_parallel},
),
SubModuleReplacementDescription(
suffix="post_attention_layernorm",
target_module=norm_cls,
kwargs={"sp_partial_derived": use_sequence_parallel},
),
],
policy=policy,
target_key=BloomBlock,
)
if use_sequence_parallel:
self.append_or_create_method_replacement(
description={"forward": get_bloom_sequence_parallel_forward_fn(self.shard_config)},
policy=policy,
target_key=BloomModel,
)
if self.shard_config.enable_flash_attention:
self.append_or_create_method_replacement(
description={
"forward": get_bloom_flash_attention_forward(),
"dropout_add": get_dropout_add_func(),
},
policy=policy,
target_key=BloomAttention,
)
# enable jit fused operator
if self.shard_config.enable_jit_fused:
self.append_or_create_method_replacement(
description={
"forward": get_jit_fused_bloom_attention_forward(),
"dropout_add": get_jit_fused_dropout_add_func(),
},
policy=policy,
target_key=BloomAttention,
)
self.append_or_create_method_replacement(
description={
"forward": get_jit_fused_bloom_mlp_forward(),
"dropout_add": get_jit_fused_dropout_add_func(),
},
policy=policy,
target_key=BloomMLP,
)
self.append_or_create_method_replacement(
description={
"forward": get_jit_fused_bloom_gelu_forward(),
"bloom_gelu_forward": get_jit_fused_gelu_forward_func(),
},
policy=policy,
target_key=BloomGelu,
)
return policy
def postprocess(self):
return self.model
def set_pipeline_forward(self, model_cls: nn.Module, new_forward: Callable, policy: Dict) -> None:
"""If under pipeline parallel setting, replacing the original forward method of huggingface
to customized forward method, and add this changing to policy."""
if self.pipeline_stage_manager:
stage_manager = self.pipeline_stage_manager
if self.model.__class__.__name__ == "BloomModel":
module = self.model
else:
module = self.model.transformer
layers_per_stage = Policy.distribute_layers(len(module.h), stage_manager.num_stages)
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
method_replacement = {
"forward": partial(
new_forward, stage_manager=stage_manager, stage_index=stage_index, shard_config=self.shard_config
)
}
self.append_or_create_method_replacement(
description=method_replacement, policy=policy, target_key=model_cls
)
return
def get_held_layers(self) -> List[Module]:
"""Get pipeline layers for current stage."""
assert self.pipeline_stage_manager is not None
if self.model.__class__.__name__ == "BloomModel":
module = self.model
else:
module = self.model.transformer
stage_manager = self.pipeline_stage_manager
held_layers = []
layers_per_stage = self.distribute_layers(len(module.h), stage_manager.num_stages)
if stage_manager.is_first_stage():
held_layers.append(module.word_embeddings)
held_layers.append(module.word_embeddings_layernorm)
start_idx, end_idx = self.get_stage_index(layers_per_stage, stage_manager.stage)
held_layers.extend(module.h[start_idx:end_idx])
if stage_manager.is_last_stage():
held_layers.append(module.ln_f)
return held_layers
class BloomModelPolicy(BloomPolicy):
def module_policy(self):
policy = super().module_policy()
from transformers.models.bloom.modeling_bloom import BloomModel
if self.pipeline_stage_manager:
self.set_pipeline_forward(
model_cls=BloomModel, new_forward=BloomPipelineForwards.bloom_model_forward, policy=policy
)
return policy
def get_held_layers(self) -> List[Module]:
"""
get pipeline layers for current stage
"""
held_layers = super().get_held_layers()
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
"""no shared params in bloom model"""
return []
class BloomForCausalLMPolicy(BloomPolicy):
def module_policy(self):
from transformers.models.bloom.modeling_bloom import BloomForCausalLM
policy = super().module_policy()
# handle tensor parallelism
if self.shard_config.enable_tensor_parallelism:
self.append_or_create_submodule_replacement(
description=SubModuleReplacementDescription(
suffix="lm_head", target_module=col_nn.Linear1D_Col, kwargs=dict(gather_output=True)
),
policy=policy,
target_key=BloomForCausalLM,
)
if self.pipeline_stage_manager:
self.set_pipeline_forward(
model_cls=BloomForCausalLM, new_forward=BloomPipelineForwards.bloom_for_causal_lm_forward, policy=policy
)
return policy
def get_held_layers(self) -> List[Module]:
"""Get pipeline layers for current stage."""
stage_manager = self.pipeline_stage_manager
held_layers = super().get_held_layers()
if stage_manager.is_last_stage():
held_layers.append(self.model.lm_head)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
bloom_model = self.model
if self.pipeline_stage_manager and self.pipeline_stage_manager.num_stages > 1:
if id(bloom_model.transformer.word_embeddings.weight) == id(bloom_model.lm_head.weight):
# tie weights
return [
{
0: bloom_model.transformer.word_embeddings.weight,
self.pipeline_stage_manager.num_stages - 1: bloom_model.lm_head.weight,
}
]
return []
class BloomForSequenceClassificationPolicy(BloomPolicy):
def module_policy(self):
from transformers.models.bloom.modeling_bloom import BloomForSequenceClassification
policy = super().module_policy()
# handle tensor parallelism
if self.shard_config.enable_tensor_parallelism:
self.append_or_create_submodule_replacement(
description=SubModuleReplacementDescription(
suffix="score", target_module=col_nn.Linear1D_Col, kwargs=dict(gather_output=True)
),
policy=policy,
target_key=BloomForSequenceClassification,
)
if self.pipeline_stage_manager:
self.set_pipeline_forward(
model_cls=BloomForSequenceClassification,
new_forward=BloomPipelineForwards.bloom_for_sequence_classification_forward,
policy=policy,
)
return policy
def get_held_layers(self) -> List[Module]:
"""Get pipeline layers for current stage."""
stage_manager = self.pipeline_stage_manager
held_layers = super().get_held_layers()
if stage_manager.is_last_stage():
held_layers.append(self.model.score)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
"""No shared params in bloom for sequence classification model"""
return []
class BloomForTokenClassificationPolicy(BloomPolicy):
def module_policy(self):
from transformers.models.bloom.modeling_bloom import BloomForTokenClassification
policy = super().module_policy()
# handle tensor parallelism
if self.shard_config.enable_tensor_parallelism:
self.append_or_create_submodule_replacement(
description=[
SubModuleReplacementDescription(
suffix="classifier", target_module=col_nn.Linear1D_Col, kwargs=dict(gather_output=True)
),
SubModuleReplacementDescription(
suffix="dropout",
target_module=col_nn.DropoutForReplicatedInput,
),
],
policy=policy,
target_key=BloomForTokenClassification,
)
if self.pipeline_stage_manager:
self.set_pipeline_forward(
model_cls=BloomForTokenClassification,
new_forward=BloomPipelineForwards.bloom_for_token_classification_forward,
policy=policy,
)
return policy
def get_held_layers(self) -> List[Module]:
"""Get pipeline layers for current stage."""
stage_manager = self.pipeline_stage_manager
held_layers = super().get_held_layers()
if stage_manager.is_last_stage():
held_layers.append(self.model.dropout)
held_layers.append(self.model.classifier)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
"""No shared params in bloom for token classification model"""
return []
class BloomForQuestionAnsweringPolicy(BloomPolicy):
# No head sharding as the output features is only 2
def module_policy(self):
from transformers.models.bloom.modeling_bloom import BloomForQuestionAnswering
policy = super().module_policy()
if self.pipeline_stage_manager:
self.set_pipeline_forward(
model_cls=BloomForQuestionAnswering,
new_forward=BloomPipelineForwards.bloom_for_question_answering_forward,
policy=policy,
)
return policy
def get_held_layers(self) -> List[Module]:
"""Get pipeline layers for current stage."""
held_layers = super().get_held_layers()
stage_manager = self.pipeline_stage_manager
if stage_manager.is_last_stage():
held_layers.append(self.model.qa_outputs)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
"""No shared params in bloom for question answering model"""
return []