mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
203 lines
6.8 KiB
203 lines
6.8 KiB
import torch |
|
from functools import partial |
|
import pytest |
|
import torch.distributed as dist |
|
import torch.multiprocessing as mp |
|
from torch.distributed import ReduceOp |
|
from colossalai.core import global_context as gpc |
|
from colossalai.initialize import launch |
|
from colossalai.utils import free_port |
|
from colossalai.testing import rerun_if_address_is_in_use |
|
from colossalai.device.device_mesh import DeviceMesh |
|
from colossalai.tensor.shape_consistency import CommSpec, CollectiveCommPattern |
|
from colossalai.logging import disable_existing_loggers |
|
from colossalai.tensor.sharding_spec import ShardingSpec |
|
|
|
|
|
def check_all_gather(device_mesh, rank): |
|
# tensor to comm |
|
if rank in (0, 2): |
|
sharded_tensor_to_comm = torch.ones(2, 2).cuda() |
|
else: |
|
sharded_tensor_to_comm = torch.zeros(2, 2).cuda() |
|
|
|
# tensor to check |
|
tensor_to_check = torch.cat((torch.ones(2, 2), torch.zeros(2, 2)), 1).cuda() |
|
|
|
# test all gather |
|
dim_partition_dict = {1: [1]} |
|
|
|
# DistSpec: |
|
# shard_sequence: R,S1 |
|
# device_mesh_shape: (2, 2) |
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) |
|
|
|
# CommSpec:(comm_pattern:allgather, gather_dim:1, logical_process_axis:1) |
|
comm_spec = CommSpec(CollectiveCommPattern.ALLGATHER, sharding_spec, gather_dim=1, logical_process_axis=1) |
|
comm_spec.covert_spec_to_action(sharded_tensor_to_comm) |
|
|
|
assert sharded_tensor_to_comm.equal(tensor_to_check) |
|
|
|
|
|
def check_shard(device_mesh, rank): |
|
# tensor to comm |
|
sharded_tensor_to_comm_0 = torch.zeros(2, 2).cuda() |
|
sharded_tensor_to_comm_1 = torch.ones(2, 2).cuda() |
|
# tensor([[0., 0., 1., 1.], |
|
# [0., 0., 1., 1.]]) |
|
tensor_to_shard = torch.cat((sharded_tensor_to_comm_0, sharded_tensor_to_comm_1), 1) |
|
|
|
# test shard |
|
dim_partition_dict = {} |
|
|
|
# DistSpec: |
|
# shard_sequence: R,R |
|
# device_mesh_shape: (2, 2) |
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_shard.shape, dim_partition_dict=dim_partition_dict) |
|
|
|
# CommSpec:(comm_pattern:shard, shard_dim:1, logical_process_axis:1) |
|
comm_spec = CommSpec(CollectiveCommPattern.SHARD, sharding_spec, shard_dim=1, logical_process_axis=1) |
|
comm_spec.covert_spec_to_action(tensor_to_shard) |
|
|
|
if rank in (0, 2): |
|
assert tensor_to_shard.equal(sharded_tensor_to_comm_0) |
|
if rank in (1, 3): |
|
assert tensor_to_shard.equal(sharded_tensor_to_comm_1) |
|
|
|
|
|
def check_all_to_all(device_mesh, rank): |
|
# tensor to comm |
|
if rank in (0, 1): |
|
sharded_tensor_0 = torch.zeros(2, 1) |
|
sharded_tensor_1 = torch.ones(2, 1) |
|
# tensor([[0., 1.], |
|
# [0., 1.]]) |
|
tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda() |
|
if rank in (2, 3): |
|
sharded_tensor_0 = torch.ones(2, 1) * 2 |
|
sharded_tensor_1 = torch.ones(2, 1) * 3 |
|
# tensor([[2., 3.], |
|
# [2., 3.]]) |
|
tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda() |
|
|
|
if rank in (0, 1): |
|
# tensor([[0.], |
|
# [0.], |
|
# [2.], |
|
# [2.]]) |
|
tensor_to_check = torch.tensor([[0], [0], [2], [2]], dtype=tensor_to_comm.dtype).cuda() |
|
if rank in (2, 3): |
|
# tensor([[1.], |
|
# [1.], |
|
# [3.], |
|
# [3.]]) |
|
tensor_to_check = torch.tensor([[1], [1], [3], [3]], dtype=tensor_to_comm.dtype).cuda() |
|
|
|
# test shard |
|
dim_partition_dict = {0: [0]} |
|
|
|
# DistSpec: |
|
# shard_sequence: S0,R |
|
# device_mesh_shape: (2, 2) |
|
sharding_spec = ShardingSpec(device_mesh, torch.Size((4, 2)), dim_partition_dict=dim_partition_dict) |
|
|
|
# CommSpec:(comm_pattern:shard, shard_dim:1, logical_process_axis:1) |
|
comm_spec = CommSpec(CollectiveCommPattern.ALLTOALL, |
|
sharding_spec, |
|
gather_dim=0, |
|
shard_dim=1, |
|
logical_process_axis=0) |
|
comm_spec.covert_spec_to_action(tensor_to_comm) |
|
|
|
assert tensor_to_comm.equal(tensor_to_check) |
|
|
|
|
|
def check_all_reduce(device_mesh, rank): |
|
# tensor to comm |
|
tensor_to_comm = torch.ones(2, 2).cuda() * rank |
|
|
|
# reduce through logical process axis 0 |
|
# tensor to check |
|
if rank in (0, 2): |
|
# tensor([[2., 2.], |
|
# [2., 2.]]) |
|
tensor_to_check = torch.tensor([[2, 2], [2, 2]], dtype=tensor_to_comm.dtype).cuda() |
|
if rank in (1, 3): |
|
# tensor([[4., 4.], |
|
# [4., 4.]]) |
|
tensor_to_check = torch.tensor([[4, 4], [4, 4]], dtype=tensor_to_comm.dtype).cuda() |
|
|
|
dim_partition_dict = {} |
|
# DistSpec: |
|
# shard_sequence: R,R |
|
# device_mesh_shape: (2, 2) |
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_comm.shape, dim_partition_dict=dim_partition_dict) |
|
|
|
# CommSpec:(comm_pattern:all_reduce, logical_process_axis:0) |
|
comm_spec = CommSpec(CollectiveCommPattern.ALLREDUCE, sharding_spec, logical_process_axis=0) |
|
comm_spec.covert_spec_to_action(tensor_to_comm) |
|
|
|
assert tensor_to_comm.equal(tensor_to_check) |
|
|
|
|
|
def check_all_reduce_in_flatten_device_mesh(device_mesh, rank): |
|
# tensor to comm |
|
tensor_to_comm = torch.ones(2, 2).cuda() * rank |
|
|
|
# reduce through logical process axis 0 at flatten device mesh |
|
# tensor to check |
|
# tensor([[6., 6.], |
|
# [6., 6.]]) |
|
tensor_to_check = torch.tensor([[6, 6], [6, 6]], dtype=tensor_to_comm.dtype).cuda() |
|
|
|
dim_partition_dict = {} |
|
# DistSpec: |
|
# shard_sequence: R,R |
|
# device_mesh_shape: (2, 2) |
|
sharding_spec = ShardingSpec(device_mesh, tensor_to_comm.shape, dim_partition_dict=dim_partition_dict) |
|
|
|
# CommSpec:(comm_pattern:all_reduce, logical_process_axis:[0, 1]) |
|
comm_spec = CommSpec(CollectiveCommPattern.ALLREDUCE, sharding_spec, logical_process_axis=[0, 1]) |
|
comm_spec.covert_spec_to_action(tensor_to_comm) |
|
|
|
assert tensor_to_comm.equal(tensor_to_check) |
|
|
|
|
|
def check_comm(rank, world_size, port): |
|
disable_existing_loggers() |
|
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') |
|
|
|
physical_mesh_id = torch.arange(0, 4) |
|
assert rank == gpc.get_global_rank() |
|
|
|
mesh_shape = (2, 2) |
|
# [[0, 1, |
|
# [2, 3]] |
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) |
|
# test all gather |
|
check_all_gather(device_mesh, rank) |
|
|
|
# test shard |
|
check_shard(device_mesh, rank) |
|
|
|
# test all to all |
|
check_all_to_all(device_mesh, rank) |
|
|
|
# test all reduce |
|
check_all_reduce(device_mesh, rank) |
|
|
|
# test all reduce in 1D flatten device mesh |
|
check_all_reduce_in_flatten_device_mesh(device_mesh, rank) |
|
gpc.destroy() |
|
|
|
|
|
@pytest.mark.dist |
|
@rerun_if_address_is_in_use() |
|
def test_comm_spec(): |
|
world_size = 4 |
|
run_func = partial(check_comm, world_size=world_size, port=free_port()) |
|
mp.spawn(run_func, nprocs=world_size) |
|
|
|
|
|
if __name__ == '__main__': |
|
test_comm_spec()
|
|
|