ColossalAI/colossalai/inference/pipeline/engine.py

98 lines
3.8 KiB
Python

import torch
import torch.nn as nn
from colossalai.cluster import ProcessGroupMesh
from colossalai.pipeline.schedule.generate import GenerateSchedule
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer import ShardConfig, ShardFormer
from colossalai.shardformer.policies.base_policy import Policy
from .microbatch_manager import MicroBatchManager
class PPInferEngine:
"""
PPInferEngine is a class that handles the pipeline parallel inference.
Args:
pp_size (int): the number of pipeline stages.
pp_model (`nn.Module`): the model already in pipeline parallelism style.
model (`nn.Module`): the model not in pipeline style, and will be modified with `ShardFormer`.
model_policy (`colossalai.shardformer.policies.base_policy.Policy`): the policy to shardformer model.
micro_batch_size (int): the micro batch size.
micro_batch_buffer_size (int): the buffer size for micro batch. Normally, it should be the same as the number of pipeline stages.
new_length (int): the new length of the input sequence.
early_stopping (bool): whether to stop early.
Example:
```python
from colossalai.ppinference import PPInferEngine
from transformers import GPT2LMHeadModel, GPT2Tokenizer
model = transformers.GPT2LMHeadModel.from_pretrained('gpt2')
# assume the model is infered with 4 pipeline stages
inferengine = PPInferEngine(pp_size=4, model=model, model_policy={Your own policy for pipeline sharding})
input = ["Hello, my dog is cute, and I like"]
tokenized_input = tokenizer(input, return_tensors='pt')
output = engine.inference([tokenized_input])
```
"""
def __init__(
self,
pp_size: int,
dtype: str = "fp16",
pp_model: nn.Module = None,
model: nn.Module = None,
model_policy: Policy = None,
new_length: int = 32,
micro_batch_size: int = 1,
micro_batch_buffer_size: int = None,
verbose: bool = False,
# TODO: implement early_stopping, and various gerneration options
early_stopping: bool = False,
do_sample: bool = False,
num_beams: int = 1,
) -> None:
assert pp_model or (model and model_policy), "Either pp_model or model with model_policy should be provided."
self.pp_size = pp_size
self.pg_mesh = ProcessGroupMesh(pp_size)
self.stage_manager = PipelineStageManager(self.pg_mesh, 0, True)
self.mb_manager = MicroBatchManager(
self.stage_manager.stage, new_length, micro_batch_size, micro_batch_buffer_size or pp_size
)
self.verbose = verbose
self.schedule = GenerateSchedule(self.stage_manager, self.mb_manager, verbose)
assert dtype in ["fp16", "fp32", "bf16"], "dtype should be one of 'fp16', 'fp32', 'bf16'"
if dtype == "fp16":
model.half()
elif dtype == "bf16":
model.to(torch.bfloat16)
self.model = pp_model or self._shardformer(model, model_policy)
def inference(self, input_list):
out, timestamp = self.schedule.generate_step(self.model, iter(input_list))
if self.verbose:
return out, timestamp
else:
return out
def _shardformer(self, model, model_policy):
shardconfig = ShardConfig(
tensor_parallel_process_group=None,
pipeline_stage_manager=self.stage_manager,
enable_tensor_parallelism=False,
enable_fused_normalization=False,
enable_all_optimization=False,
enable_flash_attention=False,
enable_jit_fused=False,
enable_sequence_parallelism=False,
)
shardformer = ShardFormer(shard_config=shardconfig)
shard_model, _ = shardformer.optimize(model, model_policy)
return shard_model.cuda()