mirror of https://github.com/hpcaitech/ColossalAI
518 lines
20 KiB
C++
518 lines
20 KiB
C++
/*
|
|
Copyright (c) Microsoft Corporation.
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in all
|
|
copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
SOFTWARE
|
|
*/
|
|
#include "cpu_adam.h"
|
|
#include <math.h>
|
|
#include <omp.h>
|
|
#include <torch/extension.h>
|
|
#include <iostream>
|
|
#include <memory>
|
|
#include <type_traits>
|
|
#include <unordered_map>
|
|
#include <string.h>
|
|
|
|
|
|
static std::unordered_map<int, std::shared_ptr<void>> s_optimizers;
|
|
|
|
// C++ interface
|
|
|
|
void Adam_Optimizer::Step_1(float* _params,
|
|
float* grads,
|
|
float* _exp_avg,
|
|
float* _exp_avg_sq,
|
|
size_t _param_size,
|
|
bool param_half_precision,
|
|
bool grad_half_precision,
|
|
float loss_scale)
|
|
{
|
|
size_t rounded_size = 0;
|
|
|
|
float betta1_minus1 = 1 - _betta1;
|
|
float betta2_minus1 = 1 - _betta2;
|
|
float step_size = -1 * _alpha / _bias_correction1;
|
|
float w_decay = -1 * _alpha * _weight_decay;
|
|
|
|
__half* params_cast_h = NULL;
|
|
__half* grads_cast_h = NULL;
|
|
|
|
if (param_half_precision) {
|
|
params_cast_h = reinterpret_cast<__half*>(_params);
|
|
}
|
|
if (grad_half_precision) {
|
|
grads_cast_h = reinterpret_cast<__half*>(grads);
|
|
}
|
|
|
|
#if defined(__AVX512__) or defined(__AVX256__) or defined(__AVX2__)
|
|
AVX_Data betta1_4;
|
|
betta1_4.data = SIMD_SET(_betta1);
|
|
AVX_Data betta2_4;
|
|
betta2_4.data = SIMD_SET(_betta2);
|
|
|
|
AVX_Data betta1_minus1_4;
|
|
betta1_minus1_4.data = SIMD_SET(betta1_minus1);
|
|
AVX_Data betta2_minus1_4;
|
|
betta2_minus1_4.data = SIMD_SET(betta2_minus1);
|
|
|
|
AVX_Data bias2_sqrt;
|
|
bias2_sqrt.data = SIMD_SET(_bias_correction2);
|
|
|
|
AVX_Data eps_4;
|
|
eps_4.data = SIMD_SET(_eps);
|
|
|
|
AVX_Data step_size_4;
|
|
step_size_4.data = SIMD_SET(step_size);
|
|
|
|
AVX_Data weight_decay_4;
|
|
if (_weight_decay > 0)
|
|
weight_decay_4.data = (_adamw_mode ? SIMD_SET(w_decay) : SIMD_SET(_weight_decay));
|
|
rounded_size = ROUND_DOWN(_param_size, SIMD_WIDTH);
|
|
|
|
for (size_t t = 0; t < rounded_size; t += TILE) {
|
|
size_t copy_size = TILE;
|
|
if ((t + TILE) > rounded_size) copy_size = rounded_size - t;
|
|
size_t offset = copy_size + t;
|
|
|
|
#pragma omp parallel for
|
|
for (size_t i = t; i < offset; i += SIMD_WIDTH) {
|
|
AVX_Data grad_4;
|
|
if (grad_half_precision) {
|
|
grad_4.data = SIMD_LOAD_HALF(grads_cast_h + i);
|
|
} else {
|
|
grad_4.data = SIMD_LOAD(grads + i);
|
|
}
|
|
if (loss_scale > 0) {
|
|
AVX_Data loss_scale_vec;
|
|
loss_scale_vec.data = SIMD_SET(loss_scale);
|
|
grad_4.data = SIMD_DIV(grad_4.data, loss_scale_vec.data);
|
|
}
|
|
AVX_Data momentum_4;
|
|
momentum_4.data = SIMD_LOAD(_exp_avg + i);
|
|
|
|
AVX_Data variance_4;
|
|
variance_4.data = SIMD_LOAD(_exp_avg_sq + i);
|
|
|
|
AVX_Data param_4;
|
|
if (param_half_precision) {
|
|
param_4.data = SIMD_LOAD_HALF(params_cast_h + i);
|
|
} else {
|
|
param_4.data = SIMD_LOAD(_params + i);
|
|
}
|
|
|
|
if (_weight_decay > 0 && !_adamw_mode) {
|
|
grad_4.data = SIMD_FMA(param_4.data, weight_decay_4.data, grad_4.data);
|
|
}
|
|
momentum_4.data = SIMD_MUL(momentum_4.data, betta1_4.data);
|
|
momentum_4.data = SIMD_FMA(grad_4.data, betta1_minus1_4.data, momentum_4.data);
|
|
variance_4.data = SIMD_MUL(variance_4.data, betta2_4.data);
|
|
grad_4.data = SIMD_MUL(grad_4.data, grad_4.data);
|
|
variance_4.data = SIMD_FMA(grad_4.data, betta2_minus1_4.data, variance_4.data);
|
|
grad_4.data = SIMD_SQRT(variance_4.data);
|
|
grad_4.data = SIMD_FMA(grad_4.data, bias2_sqrt.data, eps_4.data);
|
|
grad_4.data = SIMD_DIV(momentum_4.data, grad_4.data);
|
|
|
|
if (_weight_decay > 0 && _adamw_mode) {
|
|
param_4.data = SIMD_FMA(param_4.data, weight_decay_4.data, param_4.data);
|
|
}
|
|
param_4.data = SIMD_FMA(grad_4.data, step_size_4.data, param_4.data);
|
|
|
|
if (param_half_precision) {
|
|
SIMD_STORE_HALF((float*)(params_cast_h + i), param_4.data);
|
|
} else {
|
|
SIMD_STORE(_params + i, param_4.data);
|
|
}
|
|
SIMD_STORE(_exp_avg + i, momentum_4.data);
|
|
SIMD_STORE(_exp_avg_sq + i, variance_4.data);
|
|
}
|
|
}
|
|
#endif
|
|
if (_param_size > rounded_size) {
|
|
for (size_t t = rounded_size; t < _param_size; t += TILE) {
|
|
size_t copy_size = TILE;
|
|
if ((t + TILE) > _param_size) copy_size = _param_size - t;
|
|
size_t offset = copy_size + t;
|
|
|
|
#pragma omp parallel for
|
|
for (size_t k = t; k < offset; k++) {
|
|
float grad = grad_half_precision ? (float)grads_cast_h[k] : grads[k];
|
|
if (loss_scale > 0) { grad /= loss_scale; }
|
|
float param = param_half_precision ? (float)params_cast_h[k] : _params[k];
|
|
float momentum = _exp_avg[k];
|
|
float variance = _exp_avg_sq[k];
|
|
if (_weight_decay > 0 && !_adamw_mode) { grad = param * _weight_decay + grad; }
|
|
momentum = momentum * _betta1;
|
|
momentum = grad * betta1_minus1 + momentum;
|
|
|
|
variance = variance * _betta2;
|
|
grad = grad * grad;
|
|
variance = grad * betta2_minus1 + variance;
|
|
|
|
grad = sqrt(variance);
|
|
grad = grad * _bias_correction2 + _eps;
|
|
grad = momentum / grad;
|
|
if (_weight_decay > 0 && _adamw_mode) { param += w_decay * param; }
|
|
param = grad * step_size + param;
|
|
|
|
if (param_half_precision)
|
|
params_cast_h[k] = (__half)param;
|
|
else
|
|
_params[k] = param;
|
|
_exp_avg[k] = momentum;
|
|
_exp_avg_sq[k] = variance;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void Adam_Optimizer::Step_4(float* _params,
|
|
float* grads,
|
|
float* _exp_avg,
|
|
float* _exp_avg_sq,
|
|
size_t _param_size,
|
|
bool param_half_precision,
|
|
bool grad_half_precision,
|
|
float loss_scale)
|
|
{
|
|
size_t rounded_size = 0;
|
|
|
|
__half* params_cast_h = NULL;
|
|
__half* grads_cast_h = NULL;
|
|
if (param_half_precision) {
|
|
params_cast_h = reinterpret_cast<__half*>(_params);
|
|
}
|
|
if (grad_half_precision) {
|
|
grads_cast_h = reinterpret_cast<__half*>(grads);
|
|
}
|
|
|
|
#if defined(__AVX512__) or defined(__AVX256__) or defined(__AVX2__)
|
|
AVX_Data betta1_4;
|
|
betta1_4.data = SIMD_SET(_betta1);
|
|
AVX_Data betta2_4;
|
|
betta2_4.data = SIMD_SET(_betta2);
|
|
|
|
float betta1_minus1 = 1 - _betta1;
|
|
AVX_Data betta1_minus1_4;
|
|
betta1_minus1_4.data = SIMD_SET(betta1_minus1);
|
|
float betta2_minus1 = 1 - _betta2;
|
|
AVX_Data betta2_minus1_4;
|
|
betta2_minus1_4.data = SIMD_SET(betta2_minus1);
|
|
|
|
AVX_Data bias2_sqrt;
|
|
bias2_sqrt.data = SIMD_SET(_bias_correction2);
|
|
|
|
AVX_Data eps_4;
|
|
eps_4.data = SIMD_SET(_eps);
|
|
|
|
float step_size = -1 * _alpha / _bias_correction1;
|
|
AVX_Data step_size_4;
|
|
step_size_4.data = SIMD_SET(step_size);
|
|
|
|
float w_decay = -1 * _alpha * _weight_decay;
|
|
AVX_Data weight_decay_4;
|
|
if (_weight_decay > 0)
|
|
weight_decay_4.data = (_adamw_mode ? SIMD_SET(w_decay) : SIMD_SET(_weight_decay));
|
|
rounded_size = ROUND_DOWN(_param_size, SIMD_WIDTH * 4);
|
|
|
|
for (size_t t = 0; t < rounded_size; t += TILE) {
|
|
size_t copy_size = TILE;
|
|
if ((t + TILE) > rounded_size) copy_size = rounded_size - t;
|
|
size_t offset = copy_size + t;
|
|
|
|
#pragma omp parallel for
|
|
for (size_t i = t; i < offset; i += SIMD_WIDTH * 4) {
|
|
AVX_Data grad_4[4];
|
|
AVX_Data momentum_4[4];
|
|
AVX_Data variance_4[4];
|
|
AVX_Data param_4[4];
|
|
#pragma unroll 4
|
|
for (int j = 0; j < 4; j++) {
|
|
if (grad_half_precision) {
|
|
grad_4[j].data = SIMD_LOAD_HALF(grads_cast_h + i + SIMD_WIDTH * j);
|
|
} else {
|
|
grad_4[j].data = SIMD_LOAD(grads + i + SIMD_WIDTH * j);
|
|
}
|
|
|
|
if(loss_scale > 0) {
|
|
AVX_Data loss_scale_vec;
|
|
loss_scale_vec.data = SIMD_SET(loss_scale);
|
|
grad_4[j].data = SIMD_DIV(grad_4[j].data, loss_scale_vec.data);
|
|
}
|
|
|
|
momentum_4[j].data = SIMD_LOAD(_exp_avg + i + SIMD_WIDTH * j);
|
|
variance_4[j].data = SIMD_LOAD(_exp_avg_sq + i + SIMD_WIDTH * j);
|
|
|
|
if (param_half_precision) {
|
|
param_4[j].data = SIMD_LOAD_HALF(params_cast_h + i + SIMD_WIDTH * j);
|
|
} else {
|
|
param_4[j].data = SIMD_LOAD(_params + i + SIMD_WIDTH * j);
|
|
}
|
|
|
|
if (_weight_decay > 0 && !_adamw_mode) {
|
|
grad_4[j].data = SIMD_FMA(param_4[j].data, weight_decay_4.data, grad_4[j].data);
|
|
}
|
|
momentum_4[j].data = SIMD_MUL(momentum_4[j].data, betta1_4.data);
|
|
momentum_4[j].data = SIMD_FMA(grad_4[j].data, betta1_minus1_4.data, momentum_4[j].data);
|
|
variance_4[j].data = SIMD_MUL(variance_4[j].data, betta2_4.data);
|
|
grad_4[j].data = SIMD_MUL(grad_4[j].data, grad_4[j].data);
|
|
variance_4[j].data = SIMD_FMA(grad_4[j].data, betta2_minus1_4.data, variance_4[j].data);
|
|
grad_4[j].data = SIMD_SQRT(variance_4[j].data);
|
|
grad_4[j].data = SIMD_FMA(grad_4[j].data, bias2_sqrt.data, eps_4.data);
|
|
grad_4[j].data = SIMD_DIV(momentum_4[j].data, grad_4[j].data);
|
|
|
|
if (_weight_decay > 0 && _adamw_mode) {
|
|
param_4[j].data = SIMD_FMA(param_4[j].data, weight_decay_4.data, param_4[j].data);
|
|
}
|
|
param_4[j].data = SIMD_FMA(grad_4[j].data, step_size_4.data, param_4[j].data);
|
|
if (param_half_precision) {
|
|
SIMD_STORE_HALF((float*)(params_cast_h + i + SIMD_WIDTH * j), param_4[j].data);
|
|
} else {
|
|
SIMD_STORE(_params + i + SIMD_WIDTH * j, param_4[j].data);
|
|
}
|
|
SIMD_STORE(_exp_avg + i + SIMD_WIDTH * j, momentum_4[j].data);
|
|
SIMD_STORE(_exp_avg_sq + i + SIMD_WIDTH * j, variance_4[j].data);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
if (_param_size > rounded_size)
|
|
Step_1((param_half_precision ? (float*)(params_cast_h + rounded_size) : _params + rounded_size),
|
|
(grad_half_precision ? (float*)(grads_cast_h + rounded_size) : grads + rounded_size),
|
|
(_exp_avg + rounded_size),
|
|
(_exp_avg_sq + rounded_size),
|
|
(_param_size - rounded_size),
|
|
param_half_precision,
|
|
grad_half_precision,
|
|
loss_scale);
|
|
}
|
|
|
|
int create_adam_optimizer(int optimizer_id,
|
|
float alpha = 1e-3,
|
|
float betta1 = 0.9,
|
|
float betta2 = 0.999,
|
|
float eps = 1e-8,
|
|
float weight_decay = 0,
|
|
bool adamw_mode = true,
|
|
bool should_log = false)
|
|
{
|
|
auto opt =
|
|
std::make_shared<Adam_Optimizer>(alpha, betta1, betta2, eps, weight_decay, adamw_mode);
|
|
|
|
s_optimizers[optimizer_id] = opt;
|
|
|
|
if (should_log){
|
|
|
|
std::string avx_type = "";
|
|
#if defined(__AVX512__)
|
|
avx_type = "AVX512";
|
|
#else
|
|
#if defined(__AVX256__) or defined(__AVX2__)
|
|
avx_type = "AVX2";
|
|
#else
|
|
avx_type = "scalar";
|
|
#endif
|
|
#endif
|
|
printf("Adam Optimizer #%d is created with %s arithmetic capability.\n",
|
|
optimizer_id,
|
|
avx_type.c_str());
|
|
printf("Config: alpha=%f, betas=(%f, %f), weight_decay=%f, adam_w=%d\n",
|
|
alpha,
|
|
betta1,
|
|
betta2,
|
|
weight_decay,
|
|
(int)adamw_mode);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void Adam_Optimizer::Step_8(float* _params,
|
|
float* grads,
|
|
float* _exp_avg,
|
|
float* _exp_avg_sq,
|
|
size_t _param_size,
|
|
bool param_half_precision,
|
|
bool grad_half_precision,
|
|
float loss_scale)
|
|
{
|
|
size_t rounded_size = 0;
|
|
__half* params_cast_h = NULL;
|
|
__half* grads_cast_h = NULL;
|
|
if (param_half_precision) {
|
|
params_cast_h = reinterpret_cast<__half*>(_params);
|
|
}
|
|
if (grad_half_precision) {
|
|
grads_cast_h = reinterpret_cast<__half*>(grads);
|
|
}
|
|
#if defined(__AVX512__) or defined(__AVX256__) or defined(__AVX2__)
|
|
AVX_Data betta1_4;
|
|
betta1_4.data = SIMD_SET(_betta1);
|
|
AVX_Data betta2_4;
|
|
betta2_4.data = SIMD_SET(_betta2);
|
|
|
|
float betta1_minus1 = 1 - _betta1;
|
|
AVX_Data betta1_minus1_4;
|
|
betta1_minus1_4.data = SIMD_SET(betta1_minus1);
|
|
float betta2_minus1 = 1 - _betta2;
|
|
AVX_Data betta2_minus1_4;
|
|
betta2_minus1_4.data = SIMD_SET(betta2_minus1);
|
|
|
|
AVX_Data bias2_sqrt;
|
|
bias2_sqrt.data = SIMD_SET(_bias_correction2);
|
|
|
|
AVX_Data eps_4;
|
|
eps_4.data = SIMD_SET(_eps);
|
|
|
|
float step_size = -1 * _alpha / _bias_correction1;
|
|
AVX_Data step_size_4;
|
|
step_size_4.data = SIMD_SET(step_size);
|
|
|
|
float w_decay = -1 * _alpha * _weight_decay;
|
|
AVX_Data weight_decay_4;
|
|
if (_weight_decay > 0)
|
|
weight_decay_4.data = (_adamw_mode ? SIMD_SET(w_decay) : SIMD_SET(_weight_decay));
|
|
rounded_size = ROUND_DOWN(_param_size, SIMD_WIDTH * 8);
|
|
|
|
for (size_t t = 0; t < rounded_size; t += TILE) {
|
|
size_t copy_size = TILE;
|
|
if ((t + TILE) > rounded_size) copy_size = rounded_size - t;
|
|
size_t offset = copy_size + t;
|
|
|
|
#pragma omp parallel for
|
|
for (size_t i = t; i < offset; i += SIMD_WIDTH * 8) {
|
|
AVX_Data grad_4[8];
|
|
AVX_Data momentum_4[8];
|
|
AVX_Data variance_4[8];
|
|
AVX_Data param_4[8];
|
|
#pragma unroll 8
|
|
for (int j = 0; j < 8; j++) {
|
|
if (grad_half_precision) {
|
|
grad_4[j].data = SIMD_LOAD_HALF(grads_cast_h + i + SIMD_WIDTH * j);
|
|
} else {
|
|
grad_4[j].data = SIMD_LOAD(grads + i + SIMD_WIDTH * j);
|
|
}
|
|
|
|
if (loss_scale > 0) {
|
|
AVX_Data loss_scale_vec;
|
|
loss_scale_vec.data = SIMD_SET(loss_scale);
|
|
grad_4[j].data = SIMD_DIV(grad_4[j].data, loss_scale_vec.data);
|
|
}
|
|
|
|
momentum_4[j].data = SIMD_LOAD(_exp_avg + i + SIMD_WIDTH * j);
|
|
variance_4[j].data = SIMD_LOAD(_exp_avg_sq + i + SIMD_WIDTH * j);
|
|
|
|
if (param_half_precision) {
|
|
param_4[j].data = SIMD_LOAD_HALF(params_cast_h + i + SIMD_WIDTH * j);
|
|
} else {
|
|
param_4[j].data = SIMD_LOAD(_params + i + SIMD_WIDTH * j);
|
|
}
|
|
|
|
if (_weight_decay > 0 && !_adamw_mode) {
|
|
grad_4[j].data = SIMD_FMA(param_4[j].data, weight_decay_4.data, grad_4[j].data);
|
|
}
|
|
momentum_4[j].data = SIMD_MUL(momentum_4[j].data, betta1_4.data);
|
|
momentum_4[j].data = SIMD_FMA(grad_4[j].data, betta1_minus1_4.data, momentum_4[j].data);
|
|
variance_4[j].data = SIMD_MUL(variance_4[j].data, betta2_4.data);
|
|
grad_4[j].data = SIMD_MUL(grad_4[j].data, grad_4[j].data);
|
|
variance_4[j].data = SIMD_FMA(grad_4[j].data, betta2_minus1_4.data, variance_4[j].data);
|
|
grad_4[j].data = SIMD_SQRT(variance_4[j].data);
|
|
grad_4[j].data = SIMD_FMA(grad_4[j].data, bias2_sqrt.data, eps_4.data);
|
|
grad_4[j].data = SIMD_DIV(momentum_4[j].data, grad_4[j].data);
|
|
if (_weight_decay > 0 && _adamw_mode) {
|
|
param_4[j].data = SIMD_FMA(param_4[j].data, weight_decay_4.data, param_4[j].data);
|
|
}
|
|
param_4[j].data = SIMD_FMA(grad_4[j].data, step_size_4.data, param_4[j].data);
|
|
|
|
if (param_half_precision) {
|
|
SIMD_STORE_HALF((float*)(params_cast_h + i + SIMD_WIDTH * j), param_4[j].data);
|
|
} else {
|
|
SIMD_STORE(_params + i + SIMD_WIDTH * j, param_4[j].data);
|
|
}
|
|
|
|
SIMD_STORE(_exp_avg + i + (SIMD_WIDTH * j), momentum_4[j].data);
|
|
SIMD_STORE(_exp_avg_sq + i + (SIMD_WIDTH * j), variance_4[j].data);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
if (_param_size > rounded_size)
|
|
Step_4((param_half_precision ? (float*)(params_cast_h + rounded_size) : _params + rounded_size),
|
|
(grad_half_precision ? (float*)(grads_cast_h + rounded_size) : grads + rounded_size),
|
|
(_exp_avg + rounded_size),
|
|
(_exp_avg_sq + rounded_size),
|
|
(_param_size - rounded_size),
|
|
param_half_precision,
|
|
grad_half_precision,
|
|
loss_scale);
|
|
}
|
|
|
|
int adam_step(int optimizer_id,
|
|
size_t step,
|
|
float lr,
|
|
float beta1,
|
|
float beta2,
|
|
float epsilon,
|
|
float weight_decay,
|
|
bool bias_correction,
|
|
torch::Tensor& params,
|
|
torch::Tensor& grads,
|
|
torch::Tensor& exp_avg,
|
|
torch::Tensor& exp_avg_sq,
|
|
float loss_scale)
|
|
{
|
|
auto params_c = params.contiguous();
|
|
auto grads_c = grads.contiguous();
|
|
auto exp_avg_c = exp_avg.contiguous();
|
|
auto exp_avg_sq_c = exp_avg_sq.contiguous();
|
|
|
|
float* params_ptr = (float*)params_c.data_ptr();
|
|
float* grads_ptr = (float*)grads_c.data_ptr();
|
|
float* exp_avg_ptr = (float*)exp_avg_c.data_ptr();
|
|
float* exp_avg_sq_ptr = (float*)exp_avg_sq_c.data_ptr();
|
|
std::shared_ptr<Adam_Optimizer> opt =
|
|
std::static_pointer_cast<Adam_Optimizer>(s_optimizers[optimizer_id]);
|
|
opt->IncrementStep(step, beta1, beta2);
|
|
opt->update_state(lr, epsilon, weight_decay, bias_correction);
|
|
opt->Step_8(params_ptr,
|
|
grads_ptr,
|
|
exp_avg_ptr,
|
|
exp_avg_sq_ptr,
|
|
params_c.size(0),
|
|
(params.options().dtype() == at::kHalf),
|
|
(grads.options().dtype() == at::kHalf),
|
|
loss_scale);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
int destroy_adam_optimizer(int optimizer_id)
|
|
{
|
|
s_optimizers.erase(optimizer_id);
|
|
return 0;
|
|
}
|
|
|
|
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
|
{
|
|
m.def("adam_update", &adam_step, "CPU Adam update (C++)");
|
|
m.def("create_adam", &create_adam_optimizer, "CPU Adam (C++)");
|
|
m.def("destroy_adam", &destroy_adam_optimizer, "CPU Adam destroy (C++)");
|
|
}
|