mirror of https://github.com/hpcaitech/ColossalAI
29 lines
1.3 KiB
Python
29 lines
1.3 KiB
Python
from colossalai.cluster import ProcessGroupMesh
|
|
|
|
|
|
class MoeParallelInfo:
|
|
"""Moe parallelism information, storing parallel sizes and groups."""
|
|
|
|
def __init__(self, ep_inside: bool, ep_size: int, dp_size: int, pp_size: int = 1):
|
|
"""
|
|
init MoeParallelInfo with ep_size, dp_size and pp_size
|
|
|
|
Args:
|
|
ep_size (int): expert parallel size
|
|
dp_size (int): data parallel (zero) size
|
|
pp_size (int, optional): pipeline parallel size. Defaults to 1.
|
|
ep_inside (bool, optional): Use ep inside dp if True, dp inside ep if False. Defaults to True.
|
|
"""
|
|
self.pp_size, self.dp_size, self.ep_size = pp_size, dp_size, ep_size
|
|
if ep_inside:
|
|
self.pp_axis, self.dp_axis, self.ep_axis = 0, 1, 2
|
|
self.pg = ProcessGroupMesh(self.pp_size, self.dp_size, self.ep_size)
|
|
else:
|
|
self.pp_axis, self.ep_axis, self.dp_axis = 0, 1, 2
|
|
self.pg = ProcessGroupMesh(self.pp_size, self.ep_size, self.dp_size)
|
|
|
|
self.ep_group = self.pg.get_group_along_axis(self.ep_axis)
|
|
self.ep_group_ranks = self.pg.get_ranks_in_group(self.ep_group)
|
|
self.dp_group = self.pg.get_group_along_axis(self.dp_axis)
|
|
self.dp_group_ranks = self.pg.get_ranks_in_group(self.dp_group)
|