ColossalAI/applications/Chat/coati/models/deberta/deberta_critic.py

37 lines
1.2 KiB
Python

from typing import Optional
import torch.nn as nn
from transformers import DebertaV2Config, DebertaV2Model
from ..base import Critic
class DebertaCritic(Critic):
"""
Deberta Critic model.
Args:
pretrained (str): Pretrained model name or path.
config (DebertaV2Config): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): Rank of the LO-RA decomposition.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self,
pretrained: Optional[str] = None,
config: Optional[DebertaV2Config] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none') -> None:
if pretrained is not None:
model = DebertaV2Model.from_pretrained(pretrained)
elif config is not None:
model = DebertaV2Model(config)
else:
model = DebertaV2Model(DebertaV2Config())
if checkpoint:
model.gradient_checkpointing_enable()
value_head = nn.Linear(model.config.hidden_size, 1)
super().__init__(model, value_head, lora_rank, lora_train_bias)