mirror of https://github.com/hpcaitech/ColossalAI
31 lines
919 B
Python
31 lines
919 B
Python
from typing import Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from ..generation import generate
|
|
from .actor import Actor
|
|
|
|
|
|
class LM(Actor):
|
|
"""
|
|
Language model base class.
|
|
|
|
Args:
|
|
model (nn.Module): Language Model.
|
|
lora_rank (int): LoRA rank.
|
|
lora_train_bias (str): LoRA bias training mode.
|
|
"""
|
|
|
|
def __init__(self, model: nn.Module, lora_rank: int = 0, lora_train_bias: str = 'none') -> None:
|
|
super().__init__(model=model, lora_rank=lora_rank, lora_train_bias=lora_train_bias)
|
|
|
|
def forward(self, sequences: torch.LongTensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
"""Returns output log probs
|
|
"""
|
|
output = self.model(sequences, attention_mask=attention_mask)
|
|
logits = output['logits']
|
|
log_probs = F.log_softmax(logits, dim=-1)
|
|
return log_probs
|