ColossalAI/colossalai/nn/parallel/layers/module_utils.py

114 lines
4.7 KiB
Python

from typing import Dict
from colossalai.tensor import ColoParameter, ComputeSpec, ProcessGroup
from colossalai.tensor import distspec
from . import ColoModule
import torch
_COLOSSAL_MODULES: Dict[type, ColoModule] = {}
def register_colo_module(module_type: type, colo_module: ColoModule):
global _COLOSSAL_MODULES
_COLOSSAL_MODULES[module_type] = colo_module
def is_colo_module(module: torch.nn.Module):
global _COLOSSAL_MODULES
for module_type in _COLOSSAL_MODULES.keys():
if isinstance(module, module_type):
return True
return False
def get_colo_module(module: torch.nn.Module):
global _COLOSSAL_MODULES
if is_colo_module(module):
for module_type, colo_module in _COLOSSAL_MODULES.items():
if isinstance(module, module_type):
return colo_module
else:
return None
def check_colo_module(module: torch.nn.Module, pg: ProcessGroup, recursive=True):
if is_colo_module(module):
colo_module = get_colo_module(module)
param_names = colo_module.get_param_names()
compute_pattern = None
for param_name in param_names:
param = module.get_parameter(param_name)
if not isinstance(param, ColoParameter):
raise Exception(f'Invalid ColoParameter spec: {param} in {module} is not a ColoParameter.')
if param.has_compute_spec():
cur_compute_pattern = param.compute_spec.compute_pattern
if compute_pattern is None:
compute_pattern = cur_compute_pattern
else:
if cur_compute_pattern != compute_pattern:
raise Exception(
f'Invalid ColoParameter spec: Params in {module} have different compute_pattern.')
else:
continue
if compute_pattern is not None:
colo_module.register(compute_pattern, pg)
if not colo_module.has_compute_pattern(compute_pattern):
raise Exception(
f'Invalid ColoParameter spec: ComputePattern {compute_pattern} in {module} is not allowed.')
match_specs = False
allowed_specs = colo_module.get_dist_specs(compute_pattern)
for _, param_specs in allowed_specs.items():
cur_match = True
for param_name, dist_spec in param_specs.items():
param = module.get_parameter(param_name)
if param.has_compute_spec():
if dist_spec != param.dist_spec:
cur_match = False
break
else:
if dist_spec is not None:
cur_match = False
break
if cur_match == True:
match_specs = True
break
if match_specs == False:
raise Exception(f'Invalid ColoParameter spec: Params in {module} are incorrectly sharded.')
if recursive == True:
for submodule in module.children():
check_colo_module(submodule, pg=pg, recursive=True)
def init_colo_module(module: torch.nn.Module,
compute_spec: ComputeSpec,
pg: ProcessGroup,
recursive=True,
mode='default'):
compute_pattern = compute_spec.compute_pattern
if is_colo_module(module):
# for each param
# set its process_group, dist_spec and compute_spec
colo_module = get_colo_module(module)
colo_module.register(compute_pattern, pg)
if not colo_module.has_compute_pattern_with_mode(compute_pattern, mode=mode):
raise NotImplementedError
# a set for modules which update at least one param in the init process.
# these modules need to be checked whether all params still match one of the valid compute pattern.
modules_update_param = {module}
for param_name, dist_spec in colo_module.get_dist_specs_with_mode(compute_pattern, mode=mode).items():
if dist_spec is None:
continue
param = module.get_parameter(param_name)
if isinstance(param, ColoParameter):
param.set_process_group(pg)
param.set_dist_spec(dist_spec)
param.compute_spec = compute_spec
for mod in param.shared_param_modules:
modules_update_param.add(mod)
for mod in modules_update_param:
check_colo_module(mod, pg, recursive=False)
if recursive == True:
for submodule in module.children():
init_colo_module(submodule, compute_spec, pg=pg, recursive=True, mode=mode)