ColossalAI/colossalai/inference/tensor_parallel/kvcache_manager.py

107 lines
4.5 KiB
Python

"""
Refered/Modified from lightllm/common/mem_manager.py
of the ModelTC/lightllm GitHub repository
https://github.com/ModelTC/lightllm/blob/050af3ce65edca617e2f30ec2479397d5bb248c9/lightllm/common/mem_manager.py
we slightly changed it to make it suitable for our colossal-ai shardformer TP-engine design.
"""
import torch
from transformers.utils import logging
class MemoryManager:
r"""
Manage token block indexes and allocate physical memory for key and value cache
Args:
size: maximum token number used as the size of key and value buffer
dtype: data type of cached key and value
head_num: number of heads the memory manager is responsible for
head_dim: embedded size per head
layer_num: the number of layers in the model
device: device used to store the key and value cache
"""
def __init__(
self,
size: int,
dtype: torch.dtype,
head_num: int,
head_dim: int,
layer_num: int,
device: torch.device = torch.device("cuda"),
):
self.logger = logging.get_logger(__name__)
self.available_size = size
self.max_len_in_batch = 0
self._init_mem_states(size, device)
self._init_kv_buffers(size, device, dtype, head_num, head_dim, layer_num)
def _init_mem_states(self, size, device):
"""Initialize tensors used to manage memory states"""
self.mem_state = torch.ones((size,), dtype=torch.bool, device=device)
self.mem_cum_sum = torch.empty((size,), dtype=torch.int32, device=device)
self.indexes = torch.arange(0, size, dtype=torch.long, device=device)
def _init_kv_buffers(self, size, device, dtype, head_num, head_dim, layer_num):
"""Initialize key buffer and value buffer on specified device"""
self.key_buffer = [
torch.empty((size, head_num, head_dim), dtype=dtype, device=device) for _ in range(layer_num)
]
self.value_buffer = [
torch.empty((size, head_num, head_dim), dtype=dtype, device=device) for _ in range(layer_num)
]
@torch.no_grad()
def alloc(self, required_size):
"""allocate space of required_size by providing indexes representing available physical spaces"""
if required_size > self.available_size:
self.logger.warning(f"No enough cache: required_size {required_size} " f"left_size {self.available_size}")
return None
torch.cumsum(self.mem_state, dim=0, dtype=torch.int32, out=self.mem_cum_sum)
select_index = torch.logical_and(self.mem_cum_sum <= required_size, self.mem_state == 1)
select_index = self.indexes[select_index]
self.mem_state[select_index] = 0
self.available_size -= len(select_index)
return select_index
@torch.no_grad()
def alloc_contiguous(self, required_size):
"""allocate contiguous space of required_size"""
if required_size > self.available_size:
self.logger.warning(f"No enough cache: required_size {required_size} " f"left_size {self.available_size}")
return None
torch.cumsum(self.mem_state, dim=0, dtype=torch.int32, out=self.mem_cum_sum)
sum_size = len(self.mem_cum_sum)
loc_sums = (
self.mem_cum_sum[required_size - 1 :]
- self.mem_cum_sum[0 : sum_size - required_size + 1]
+ self.mem_state[0 : sum_size - required_size + 1]
)
can_used_loc = self.indexes[0 : sum_size - required_size + 1][loc_sums == required_size]
if can_used_loc.shape[0] == 0:
self.logger.info(
f"No enough contiguous cache: required_size {required_size} " f"left_size {self.available_size}"
)
return None
start_loc = can_used_loc[0]
select_index = self.indexes[start_loc : start_loc + required_size]
self.mem_state[select_index] = 0
self.available_size -= len(select_index)
start = start_loc.item()
end = start + required_size
return select_index, start, end
@torch.no_grad()
def free(self, free_index):
"""free memory by updating memory states based on given indexes"""
self.available_size += free_index.shape[0]
self.mem_state[free_index] = 1
@torch.no_grad()
def free_all(self):
"""free all memory by updating memory states"""
self.available_size = len(self.mem_state)
self.mem_state[:] = 1
self.max_len_in_batch = 0
self.logger.info("freed all space of memory manager")