ColossalAI/colossalai/zero/zero_optimizer.py

246 lines
11 KiB
Python

from enum import Enum
from typing import Dict, Set, Tuple
import torch
import torch.distributed as dist
from torch.nn import Parameter
from torch.optim import Optimizer
from colossalai.amp.naive_amp.grad_scaler import DynamicGradScaler
from colossalai.gemini.chunk import Chunk, ChunkManager
from colossalai.logging import get_dist_logger
from colossalai.nn.optimizer import ColossalaiOptimizer
from colossalai.nn.parallel.data_parallel import ZeroDDP
from colossalai.utils import disposable, get_current_device
class OptimState(Enum):
SCALED = 0
UNSCALED = 1
class ZeroOptimizer(ColossalaiOptimizer):
"""A wrapper for optimizer. ``ZeroDDP`` and ``ZeroOptimizer`` implement Zero Redundancy Optimizer (ZeRO state-3).
Note:
You must use ``ZeroDDP`` with ``ZeroOptimizer``.
Note:
Make sure you set ``placement_policy`` of ``GeminiManager`` to `"auto"`,
if you set ``gpu_margin_mem_ratio > 0``.
Args:
optim (Optimizer): An Optimizer instance.
module (ZeroDDP): A ``ZeroDDP`` instance.
gpu_margin_mem_ratio (float, optional): The ratio of GPU remaining memory (after the first forward-backward)
which will be used when using hybrid CPU optimizer.
This argument is meaningless when `placement_policy` of `GeminiManager` is not "auto".
Defaults to 0.0.
initial_scale (float, optional): Initial scale used by DynamicGradScaler. Defaults to 2**32.
min_scale (float, optional): Min scale used by DynamicGradScaler. Defaults to 1.
growth_factor (float, optional): growth_factor used by DynamicGradScaler. Defaults to 2.
backoff_factor (float, optional): backoff_factor used by DynamicGradScaler. Defaults to 0.5.
growth_interval (float, optional): growth_interval used by DynamicGradScaler. Defaults to 1000.
hysteresis (float, optional): hysteresis used by DynamicGradScaler. Defaults to 2.
max_scale (int, optional): max_scale used by DynamicGradScaler. Defaults to 2**32.
"""
def __init__(self,
optim: Optimizer,
module: ZeroDDP,
gpu_margin_mem_ratio: float = 0.0,
initial_scale: float = 2**32,
min_scale: float = 1,
growth_factor: float = 2,
backoff_factor: float = 0.5,
growth_interval: int = 1000,
hysteresis: int = 2,
max_scale: float = 2**32):
super().__init__(optim)
assert isinstance(module, ZeroDDP)
self.module = module
self.gemini_manager = module.gemini_manager
self.chunk_manager: ChunkManager = self.gemini_manager.chunk_manager
self.optim_state = OptimState.UNSCALED
self.param_to_range: Dict[Parameter, Tuple[int, int]] = dict()
self.param_to_chunk32: Dict[Parameter, Chunk] = dict()
self.chunk16_set: Set[Chunk] = set()
params_list = [p for p in module.parameters() if not getattr(p, '_ddp_to_ignore', False)]
for p, fp32_p in zip(params_list, module.fp32_params):
chunk_16 = self.chunk_manager.get_chunk(p)
if chunk_16 not in self.chunk16_set:
self.chunk16_set.add(chunk_16)
self.__init__optimizer()
# Grad scaler
self.grad_scaler = DynamicGradScaler(initial_scale=initial_scale,
min_scale=min_scale,
growth_factor=growth_factor,
backoff_factor=backoff_factor,
growth_interval=growth_interval,
hysteresis=hysteresis,
max_scale=max_scale)
self._found_overflow: torch.Tensor = torch.zeros(1, dtype=torch.int64, device=get_current_device())
self._logger = get_dist_logger()
self.gpu_margin_mem_ratio: float = float(gpu_margin_mem_ratio)
assert 0.0 <= self.gpu_margin_mem_ratio <= 1.0, f'gpu_margin_mem_ratio must >=0.0 and <=1.0'
# Only move fp32 shards from CPU to GPU when user allows and inner optimizer is valid
# Inner optimizer must support optimizing hybrid (CPU and CUDA) tensors,
# and it must set `num_fp32_shards_per_param` correctly
self._should_move_fp32_params_h2d: bool = self.gemini_manager.is_cuda_margin_mem_avail and self.gpu_margin_mem_ratio > 0.0 and getattr(
optim, 'num_fp32_shards_per_param', 0) >= 2
if self.gpu_margin_mem_ratio > 0.0 and not self.gemini_manager.is_cuda_margin_mem_avail:
self._logger.warning(f'gpu_margin_mem_ratio is meaningless when placement_policy is not "auto"', ranks=[0])
self._register_states = disposable(self._register_states_)
def _set_grad_ptr(self):
for group in self.param_groups:
for fake_param in group['params']:
chunk32 = self.param_to_chunk32[fake_param]
begin, end = self.param_to_range[fake_param]
chunk16 = chunk32.paired_chunk
fake_param.data = chunk16.payload[begin:end]
fake_param.grad = fake_param.data
fake_param.data = chunk32.payload[begin:end]
def _update_fp16_params(self):
none_tensor = torch.empty([0])
for group in self.param_groups:
for fake_param in group['params']:
assert fake_param.grad is None
fake_param.data = none_tensor
for chunk16 in self.chunk16_set:
chunk16.optim_update()
def _check_overflow(self):
# clear previous overflow record
self._found_overflow.fill_(self.module.overflow_counter)
# all-reduce across global group
dist.all_reduce(self._found_overflow)
return self._found_overflow.item() > 0
def _unscale_grads(self):
assert self.optim_state == OptimState.SCALED
for group in self.optim.param_groups:
for p in group['params']:
if p.grad is not None:
p.grad.data.div_(self.loss_scale)
self.optim_state = OptimState.UNSCALED
@property
def loss_scale(self):
return self.grad_scaler.scale.item()
def zero_grad(self, *args, **kwargs):
self.module.overflow_counter = 0
return self.optim.zero_grad(set_to_none=True)
def step(self, *args, **kwargs):
self._maybe_move_fp32_params()
self._set_grad_ptr()
# unscale grads if scaled
if self.optim_state == OptimState.SCALED:
self._unscale_grads()
found_inf = self._check_overflow()
self.grad_scaler.update(found_inf)
if found_inf:
self._logger.info(f'Found overflow. Skip step')
self.zero_grad()
self._update_fp16_params()
return
ret = self.optim.step(*args, **kwargs)
self._register_states()
self.zero_grad()
self._update_fp16_params()
return ret
def clip_grad_norm(self, model: torch.nn.Module, max_norm: float, norm_type: float = 2.0):
raise NotImplementedError
def backward(self, loss: torch.Tensor):
loss = self.loss_scale * loss
self.optim_state = OptimState.SCALED
self.module.backward(loss)
def backward_by_grad(self, tensor: torch.Tensor, grad: torch.Tensor):
# This function is called except the last stage of pipeline parallel
# It receives the scaled grad from the previous rank
# No need to scale the grad again
# Need to unscale when optimizing
self.optim_state = OptimState.SCALED
self.module.backward_by_grad(tensor, grad)
def _maybe_move_fp32_params(self):
if self._should_move_fp32_params_h2d:
self._should_move_fp32_params_h2d = False
available_cuda_margin_mem = self.gemini_manager.cuda_margin_mem * self.gpu_margin_mem_ratio
fp32_params_available_cuda_margin_mem = available_cuda_margin_mem / self.optim.num_fp32_shards_per_param
fp32_params_used_cuda_margin_mem = 0
for group in self.param_groups:
for fake_param in group['params']:
chunk32 = self.param_to_chunk32[fake_param]
chunk16 = chunk32.paired_chunk
if chunk32.device_type == 'cuda':
continue
if fp32_params_used_cuda_margin_mem + chunk32.payload_mem < fp32_params_available_cuda_margin_mem:
self.chunk_manager.move_chunk(chunk32, get_current_device())
# stores grad now
self.chunk_manager.move_chunk(chunk16, get_current_device())
self.module.set_chunk_grad_device(chunk16, get_current_device())
fp32_params_used_cuda_margin_mem += chunk32.payload_mem
for group in self.param_groups:
for fake_param in group['params']:
chunk32 = self.param_to_chunk32[fake_param]
if chunk32.device_type == 'cuda':
state = self.optim.state[fake_param]
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to(get_current_device())
def _register_states_(self):
for group in self.optim.param_groups:
for p in group['params']:
state = self.optim.state[p]
for val in state.values():
if isinstance(val, torch.Tensor):
self.chunk_manager.add_extern_static_tensor(val)
def __init__optimizer(self):
def get_range_pair(local_chunk: Chunk, local_param: Parameter):
param_info = local_chunk.tensors_info[local_param]
if local_chunk.keep_gathered:
return param_info.offset, param_info.end
begin = max(0, param_info.offset - local_chunk.shard_begin)
end = min(local_chunk.shard_size, param_info.end - local_chunk.shard_begin)
return begin, end
for group in self.optim.param_groups:
fake_params_list = list()
for param in group['params']:
chunk16 = self.chunk_manager.get_chunk(param)
range_pair = get_range_pair(chunk16, param)
if range_pair[0] >= range_pair[1]:
continue
fake_param = torch.nn.Parameter(torch.empty([0]))
self.param_to_chunk32[fake_param] = chunk16.paired_chunk
self.param_to_range[fake_param] = range_pair
fake_params_list.append(fake_param)
group['params'] = fake_params_list