You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_zero/test_gemini/test_zerooptim_state_dict.py

84 lines
2.9 KiB

import pytest
import torch
import torch.distributed as dist
import colossalai
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.utils import set_seed
from colossalai.zero import GeminiDDP, GeminiOptimizer
from colossalai.zero.gemini.chunk import search_chunk_configuration
from tests.components_to_test.registry import non_distributed_component_funcs
PLACEMENT_CONFIGS = [
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 0.0}, # zero2
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 1.0}, # zero2-offload
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 0.5}, # zero2-offload-half
{"placement_policy": "auto"},
]
@parameterize("placement_config", PLACEMENT_CONFIGS)
@parameterize("keep_gathered", [True, False])
def exam_zero_optim_state_dict(placement_config, keep_gathered):
set_seed(431)
get_components_func = non_distributed_component_funcs.get_callable("gpt2")
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
model = model_builder()
set_seed(451)
world_size = torch.distributed.get_world_size()
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
config_dict[world_size]["chunk_size"] = 5000
config_dict[world_size]["keep_gathered"] = keep_gathered
model = GeminiDDP(model, config_dict, **placement_config, pin_memory=True)
optimizer = HybridAdam(model.parameters())
optim = GeminiOptimizer(optimizer, model, initial_scale=32) # initialize the link between chunk16 and chunk32
set_seed(dist.get_rank() * 3 + 128)
model.train()
for i, (input_ids, label) in enumerate(train_dataloader):
if i > 0:
break
optim.zero_grad()
logits = model(input_ids)
logits = logits.float()
loss = criterion(logits, input_ids)
optim.backward(loss)
optim.step()
optim_state_dict = optim.state_dict()
optim.load_state_dict(optim_state_dict)
new_state = optim.state_dict()["state"]
org_state = optim_state_dict["state"]
for k, v in org_state.items():
w = new_state[k]
for n, m in v.items():
if isinstance(m, torch.Tensor):
o = w[n]
assert torch.equal(m, o)
else:
assert m == w[n]
def run_dist(rank, world_size, port):
config = {}
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
exam_zero_optim_state_dict()
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [1, 4])
@rerun_if_address_is_in_use()
def test_zero_optim(world_size):
spawn(run_dist, world_size)
if __name__ == "__main__":
test_zero_optim(1)