You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/kernel/cuda_native/csrc/kernels/general_kernels.cu

233 lines
7.2 KiB

#include <cooperative_groups.h>
#include "kernels.h"
namespace cg = cooperative_groups;
/**
@brief: fuse_transpose_bias
Calculate the sum of elements in each column of the matrix.
@thread
gridDim.x = ceil(cols / WARP_SIZE)
blockDim.x = WARP_SIZE
blockDim.y = WARP_SIZE
@param
inp: [rows, cols]
out: [cols]
rows: the number of rows in the matrix
cols: the number of cols in the matrix
*/
template <typename T>
__global__ void column_sum_reduce(const T *__restrict__ inp,
T *__restrict__ out, int rows, int cols) {
__shared__ float tile[WARP_SIZE][WARP_SIZE];
cg::thread_block b = cg::this_thread_block();
cg::thread_block_tile<WARP_SIZE> g = cg::tiled_partition<WARP_SIZE>(b);
int idx = flat_2dim(blockIdx.x, threadIdx.x, WARP_SIZE);
int y_stride = cols * WARP_SIZE;
float localSum = 0;
// Loop across matrix row
// TODO: optimize to log complexity
if (idx < cols) {
int offset = flat_2dim(threadIdx.y, idx, cols);
for (int r = threadIdx.y; r < rows; r += WARP_SIZE) {
localSum += (float)inp[offset];
offset += y_stride;
}
}
// The sum of a row in tile is equal to the sum of a col in original matrix
tile[threadIdx.x][threadIdx.y] = localSum;
__syncthreads();
// Sum the shared buffer.
// The change of threadIdx.x is continuous
float sum = tile[threadIdx.y][threadIdx.x];
__syncthreads();
// Calculate the sum of a row in tile
for (int i = 1; i < WARP_SIZE; i <<= 1) sum += g.shfl_down(sum, i);
if (threadIdx.x == 0) {
int pos = flat_2dim(blockIdx.x, threadIdx.y, WARP_SIZE);
if (pos < cols) out[pos] = sum;
}
}
// [r, c] -> [c]
template <>
void launch_fuse_transpose_bias_kernel<float>(const float *inp, float *out,
int rows, int cols,
cudaStream_t stream) {
dim3 grid_dim((cols - 1) / WARP_SIZE + 1);
dim3 block_dim(WARP_SIZE, WARP_SIZE);
column_sum_reduce<float>
<<<grid_dim, block_dim, 0, stream>>>(inp, out, rows, cols);
}
template <>
void launch_fuse_transpose_bias_kernel<__half>(const __half *inp, __half *out,
int rows, int cols,
cudaStream_t stream) {
dim3 grid_dim((cols - 1) / WARP_SIZE + 1);
dim3 block_dim(WARP_SIZE, WARP_SIZE);
column_sum_reduce<__half>
<<<grid_dim, block_dim, 0, stream>>>(inp, out, rows, cols);
}
/**
@brief: fused_add2
Add two matrix inp1 and inp2 to out.
@thread
gridDim.x = batch_size * seq_len
blockDim.x = min(hidden_dim, MAX_THREADS)
@param
inp1: [batch_size, seq_len, hidden_dim]
inp2: [batch_size, seq_len, hidden_dim]
out: [batch_size, seq_len, hidden_dim]
batch_size: the size of the current batch
seq_len: the sequence length of the current batch
hidden_dim: dim of the hidden tensor
*/
template <typename T>
__global__ void fused_add2_kernel(T *out, const T *inp1, const T *inp2,
int hidden_dim);
template <>
__global__ void fused_add2_kernel<float>(float *out, const float *inp1,
const float *inp2, int hidden_dim) {
int row_id = blockIdx.x;
int offset = flat_2dim(row_id, 0, hidden_dim);
const float4 *inp1_4 = reinterpret_cast<const float4 *>(inp1);
const float4 *inp2_4 = reinterpret_cast<const float4 *>(inp2);
float4 *out_4 = reinterpret_cast<float4 *>(out);
float4 vinp1;
float4 vinp2;
float4 val;
for (std::size_t i = threadIdx.x; i < hidden_dim; i += blockDim.x) {
vinp1 = inp1_4[offset + i];
vinp2 = inp2_4[offset + i];
val.x = vinp1.x + vinp2.x;
val.y = vinp1.y + vinp2.y;
val.z = vinp1.z + vinp2.z;
val.w = vinp1.w + vinp2.w;
out_4[offset + i] = val;
}
}
template <>
__global__ void fused_add2_kernel<__half>(__half *out, const __half *inp1,
const __half *inp2, int hidden_dim) {
int row_id = blockIdx.x;
int offset = flat_2dim(row_id, 0, hidden_dim);
const float4 *inp1_4 = reinterpret_cast<const float4 *>(inp1);
const float4 *inp2_4 = reinterpret_cast<const float4 *>(inp2);
float4 *out_4 = reinterpret_cast<float4 *>(out);
float4 vinp1;
float4 vinp2;
float4 val;
__half2 *h2_inp1 = reinterpret_cast<__half2 *>(&vinp1);
__half2 *h2_inp2 = reinterpret_cast<__half2 *>(&vinp2);
__half2 *h2_val = reinterpret_cast<__half2 *>(&val);
for (std::size_t i = threadIdx.x; i < hidden_dim; i += blockDim.x) {
vinp1 = inp1_4[offset + i];
vinp2 = inp2_4[offset + i];
h2_val[0] = __hadd2(h2_inp1[0], h2_inp2[0]);
h2_val[1] = __hadd2(h2_inp1[1], h2_inp2[1]);
h2_val[2] = __hadd2(h2_inp1[2], h2_inp2[2]);
h2_val[3] = __hadd2(h2_inp1[3], h2_inp2[3]);
out_4[offset + i] = val;
}
}
//[b, s, h] -> [b, s, h]
template <>
void launch_fused_add2<float>(float *out, const float *inp1, const float *inp2,
int batch_size, int seq_len, int hidden_dim,
cudaStream_t &stream) {
hidden_dim >>= 2;
dim3 grid_dim(batch_size * seq_len);
dim3 block_dim(min(hidden_dim, MAX_THREADS));
fused_add2_kernel<<<grid_dim, block_dim, 0, stream>>>(out, inp1, inp2,
hidden_dim);
}
template <>
void launch_fused_add2<__half>(__half *out, const __half *inp1,
const __half *inp2, int batch_size, int seq_len,
int hidden_dim, cudaStream_t &stream) {
hidden_dim >>= 3;
dim3 grid_dim(batch_size * seq_len);
dim3 block_dim(min(hidden_dim, MAX_THREADS));
fused_add2_kernel<<<grid_dim, block_dim, 0, stream>>>(out, inp1, inp2,
hidden_dim);
}
template <typename T>
__global__ void kernel_concat3_dim1(const T *inp1, const T *inp2, T *output,
int sz0, int sz2, int sz1_1, int sz1_2) {
int nele = sz0 * sz2 * (sz1_1 + sz1_2);
int idx = flat_2dim(blockIdx.x, threadIdx.x, blockDim.x);
if (idx >= nele) {
return;
}
float4 *dst_ptr = (float4 *)output + idx;
int idx2 = idx % sz2;
idx = idx / sz2;
int idx1 = idx % (sz1_1 + sz1_2);
int idx0 = idx / (sz1_1 + sz1_2);
float4 *src_ptr = nullptr;
int sz1 = 0;
if (idx1 < sz1_1) {
sz1 = sz1_1;
src_ptr = (float4 *)inp1;
} else {
idx1 -= sz1_1;
sz1 = sz1_2;
src_ptr = (float4 *)inp2;
}
src_ptr += flat_3dim(idx0, idx1, idx2, sz1, sz2);
dst_ptr[0] = src_ptr[0];
}
template <>
void launch_concat3_dim1<float>(const float *inp1, const float *inp2,
float *output, int sz0, int sz2, int sz1_1,
int sz1_2, cudaStream_t stream) {
sz2 >>= 2;
int nele = sz0 * sz2 * (sz1_1 + sz1_2);
int nblock = (nele + MAX_THREADS - 1) / MAX_THREADS;
kernel_concat3_dim1<<<nblock, MAX_THREADS, 0, stream>>>(
inp1, inp2, output, sz0, sz2, sz1_1, sz1_2);
}
template <>
void launch_concat3_dim1<__half>(const __half *inp1, const __half *inp2,
__half *output, int sz0, int sz2, int sz1_1,
int sz1_2, cudaStream_t stream) {
sz2 >>= 3;
int nele = sz0 * sz2 * (sz1_1 + sz1_2);
int nblock = (nele + MAX_THREADS - 1) / MAX_THREADS;
kernel_concat3_dim1<<<nblock, MAX_THREADS, 0, stream>>>(
inp1, inp2, output, sz0, sz2, sz1_1, sz1_2);
}