mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
233 lines
7.2 KiB
233 lines
7.2 KiB
#include <cooperative_groups.h>
|
|
|
|
#include "kernels.h"
|
|
|
|
namespace cg = cooperative_groups;
|
|
|
|
/**
|
|
@brief: fuse_transpose_bias
|
|
Calculate the sum of elements in each column of the matrix.
|
|
|
|
@thread
|
|
gridDim.x = ceil(cols / WARP_SIZE)
|
|
blockDim.x = WARP_SIZE
|
|
blockDim.y = WARP_SIZE
|
|
|
|
@param
|
|
inp: [rows, cols]
|
|
out: [cols]
|
|
rows: the number of rows in the matrix
|
|
cols: the number of cols in the matrix
|
|
*/
|
|
template <typename T>
|
|
__global__ void column_sum_reduce(const T *__restrict__ inp,
|
|
T *__restrict__ out, int rows, int cols) {
|
|
__shared__ float tile[WARP_SIZE][WARP_SIZE];
|
|
|
|
cg::thread_block b = cg::this_thread_block();
|
|
cg::thread_block_tile<WARP_SIZE> g = cg::tiled_partition<WARP_SIZE>(b);
|
|
|
|
int idx = flat_2dim(blockIdx.x, threadIdx.x, WARP_SIZE);
|
|
int y_stride = cols * WARP_SIZE;
|
|
float localSum = 0;
|
|
|
|
// Loop across matrix row
|
|
// TODO: optimize to log complexity
|
|
if (idx < cols) {
|
|
int offset = flat_2dim(threadIdx.y, idx, cols);
|
|
for (int r = threadIdx.y; r < rows; r += WARP_SIZE) {
|
|
localSum += (float)inp[offset];
|
|
offset += y_stride;
|
|
}
|
|
}
|
|
|
|
// The sum of a row in tile is equal to the sum of a col in original matrix
|
|
tile[threadIdx.x][threadIdx.y] = localSum;
|
|
|
|
__syncthreads();
|
|
|
|
// Sum the shared buffer.
|
|
// The change of threadIdx.x is continuous
|
|
float sum = tile[threadIdx.y][threadIdx.x];
|
|
|
|
__syncthreads();
|
|
|
|
// Calculate the sum of a row in tile
|
|
for (int i = 1; i < WARP_SIZE; i <<= 1) sum += g.shfl_down(sum, i);
|
|
|
|
if (threadIdx.x == 0) {
|
|
int pos = flat_2dim(blockIdx.x, threadIdx.y, WARP_SIZE);
|
|
if (pos < cols) out[pos] = sum;
|
|
}
|
|
}
|
|
|
|
// [r, c] -> [c]
|
|
template <>
|
|
void launch_fuse_transpose_bias_kernel<float>(const float *inp, float *out,
|
|
int rows, int cols,
|
|
cudaStream_t stream) {
|
|
dim3 grid_dim((cols - 1) / WARP_SIZE + 1);
|
|
dim3 block_dim(WARP_SIZE, WARP_SIZE);
|
|
|
|
column_sum_reduce<float>
|
|
<<<grid_dim, block_dim, 0, stream>>>(inp, out, rows, cols);
|
|
}
|
|
|
|
template <>
|
|
void launch_fuse_transpose_bias_kernel<__half>(const __half *inp, __half *out,
|
|
int rows, int cols,
|
|
cudaStream_t stream) {
|
|
dim3 grid_dim((cols - 1) / WARP_SIZE + 1);
|
|
dim3 block_dim(WARP_SIZE, WARP_SIZE);
|
|
|
|
column_sum_reduce<__half>
|
|
<<<grid_dim, block_dim, 0, stream>>>(inp, out, rows, cols);
|
|
}
|
|
|
|
/**
|
|
@brief: fused_add2
|
|
Add two matrix inp1 and inp2 to out.
|
|
|
|
@thread
|
|
gridDim.x = batch_size * seq_len
|
|
blockDim.x = min(hidden_dim, MAX_THREADS)
|
|
|
|
@param
|
|
inp1: [batch_size, seq_len, hidden_dim]
|
|
inp2: [batch_size, seq_len, hidden_dim]
|
|
out: [batch_size, seq_len, hidden_dim]
|
|
batch_size: the size of the current batch
|
|
seq_len: the sequence length of the current batch
|
|
hidden_dim: dim of the hidden tensor
|
|
*/
|
|
template <typename T>
|
|
__global__ void fused_add2_kernel(T *out, const T *inp1, const T *inp2,
|
|
int hidden_dim);
|
|
|
|
template <>
|
|
__global__ void fused_add2_kernel<float>(float *out, const float *inp1,
|
|
const float *inp2, int hidden_dim) {
|
|
int row_id = blockIdx.x;
|
|
int offset = flat_2dim(row_id, 0, hidden_dim);
|
|
|
|
const float4 *inp1_4 = reinterpret_cast<const float4 *>(inp1);
|
|
const float4 *inp2_4 = reinterpret_cast<const float4 *>(inp2);
|
|
float4 *out_4 = reinterpret_cast<float4 *>(out);
|
|
float4 vinp1;
|
|
float4 vinp2;
|
|
float4 val;
|
|
|
|
for (std::size_t i = threadIdx.x; i < hidden_dim; i += blockDim.x) {
|
|
vinp1 = inp1_4[offset + i];
|
|
vinp2 = inp2_4[offset + i];
|
|
val.x = vinp1.x + vinp2.x;
|
|
val.y = vinp1.y + vinp2.y;
|
|
val.z = vinp1.z + vinp2.z;
|
|
val.w = vinp1.w + vinp2.w;
|
|
out_4[offset + i] = val;
|
|
}
|
|
}
|
|
|
|
template <>
|
|
__global__ void fused_add2_kernel<__half>(__half *out, const __half *inp1,
|
|
const __half *inp2, int hidden_dim) {
|
|
int row_id = blockIdx.x;
|
|
int offset = flat_2dim(row_id, 0, hidden_dim);
|
|
|
|
const float4 *inp1_4 = reinterpret_cast<const float4 *>(inp1);
|
|
const float4 *inp2_4 = reinterpret_cast<const float4 *>(inp2);
|
|
float4 *out_4 = reinterpret_cast<float4 *>(out);
|
|
float4 vinp1;
|
|
float4 vinp2;
|
|
float4 val;
|
|
__half2 *h2_inp1 = reinterpret_cast<__half2 *>(&vinp1);
|
|
__half2 *h2_inp2 = reinterpret_cast<__half2 *>(&vinp2);
|
|
__half2 *h2_val = reinterpret_cast<__half2 *>(&val);
|
|
|
|
for (std::size_t i = threadIdx.x; i < hidden_dim; i += blockDim.x) {
|
|
vinp1 = inp1_4[offset + i];
|
|
vinp2 = inp2_4[offset + i];
|
|
h2_val[0] = __hadd2(h2_inp1[0], h2_inp2[0]);
|
|
h2_val[1] = __hadd2(h2_inp1[1], h2_inp2[1]);
|
|
h2_val[2] = __hadd2(h2_inp1[2], h2_inp2[2]);
|
|
h2_val[3] = __hadd2(h2_inp1[3], h2_inp2[3]);
|
|
out_4[offset + i] = val;
|
|
}
|
|
}
|
|
|
|
//[b, s, h] -> [b, s, h]
|
|
template <>
|
|
void launch_fused_add2<float>(float *out, const float *inp1, const float *inp2,
|
|
int batch_size, int seq_len, int hidden_dim,
|
|
cudaStream_t &stream) {
|
|
hidden_dim >>= 2;
|
|
|
|
dim3 grid_dim(batch_size * seq_len);
|
|
dim3 block_dim(min(hidden_dim, MAX_THREADS));
|
|
|
|
fused_add2_kernel<<<grid_dim, block_dim, 0, stream>>>(out, inp1, inp2,
|
|
hidden_dim);
|
|
}
|
|
|
|
template <>
|
|
void launch_fused_add2<__half>(__half *out, const __half *inp1,
|
|
const __half *inp2, int batch_size, int seq_len,
|
|
int hidden_dim, cudaStream_t &stream) {
|
|
hidden_dim >>= 3;
|
|
|
|
dim3 grid_dim(batch_size * seq_len);
|
|
dim3 block_dim(min(hidden_dim, MAX_THREADS));
|
|
|
|
fused_add2_kernel<<<grid_dim, block_dim, 0, stream>>>(out, inp1, inp2,
|
|
hidden_dim);
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void kernel_concat3_dim1(const T *inp1, const T *inp2, T *output,
|
|
int sz0, int sz2, int sz1_1, int sz1_2) {
|
|
int nele = sz0 * sz2 * (sz1_1 + sz1_2);
|
|
int idx = flat_2dim(blockIdx.x, threadIdx.x, blockDim.x);
|
|
if (idx >= nele) {
|
|
return;
|
|
}
|
|
float4 *dst_ptr = (float4 *)output + idx;
|
|
int idx2 = idx % sz2;
|
|
idx = idx / sz2;
|
|
int idx1 = idx % (sz1_1 + sz1_2);
|
|
int idx0 = idx / (sz1_1 + sz1_2);
|
|
float4 *src_ptr = nullptr;
|
|
int sz1 = 0;
|
|
if (idx1 < sz1_1) {
|
|
sz1 = sz1_1;
|
|
src_ptr = (float4 *)inp1;
|
|
} else {
|
|
idx1 -= sz1_1;
|
|
sz1 = sz1_2;
|
|
src_ptr = (float4 *)inp2;
|
|
}
|
|
src_ptr += flat_3dim(idx0, idx1, idx2, sz1, sz2);
|
|
dst_ptr[0] = src_ptr[0];
|
|
}
|
|
|
|
template <>
|
|
void launch_concat3_dim1<float>(const float *inp1, const float *inp2,
|
|
float *output, int sz0, int sz2, int sz1_1,
|
|
int sz1_2, cudaStream_t stream) {
|
|
sz2 >>= 2;
|
|
int nele = sz0 * sz2 * (sz1_1 + sz1_2);
|
|
int nblock = (nele + MAX_THREADS - 1) / MAX_THREADS;
|
|
kernel_concat3_dim1<<<nblock, MAX_THREADS, 0, stream>>>(
|
|
inp1, inp2, output, sz0, sz2, sz1_1, sz1_2);
|
|
}
|
|
|
|
template <>
|
|
void launch_concat3_dim1<__half>(const __half *inp1, const __half *inp2,
|
|
__half *output, int sz0, int sz2, int sz1_1,
|
|
int sz1_2, cudaStream_t stream) {
|
|
sz2 >>= 3;
|
|
int nele = sz0 * sz2 * (sz1_1 + sz1_2);
|
|
int nblock = (nele + MAX_THREADS - 1) / MAX_THREADS;
|
|
kernel_concat3_dim1<<<nblock, MAX_THREADS, 0, stream>>>(
|
|
inp1, inp2, output, sz0, sz2, sz1_1, sz1_2);
|
|
}
|