You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/_analyzer/fx/graph_module.py

240 lines
9.7 KiB

import linecache
import os
import sys
import traceback
import warnings
from pathlib import Path
from typing import Any, Dict, Optional, Union
import torch
import torch.fx
import torch.nn as nn
from torch.fx.graph import PythonCode
try:
from torch.fx.graph import _PyTreeCodeGen
SUPPORT_PT_CODEGEN = True
except ImportError:
SUPPORT_PT_CODEGEN = False
from torch.fx.graph_module import _exec_with_source, _forward_from_src
from torch.nn.modules.module import _addindent
# This is a copy of torch.fx.graph_module._WrappedCall.
# It should be removed when we stop supporting torch < 1.12.0.
class _WrappedCall:
def __init__(self, cls, cls_call):
self.cls = cls
self.cls_call = cls_call
# Previously, if an error occurred when valid
# symbolically-traced code was run with an invalid input, the
# user would see the source of the error as coming from
# `File "<eval_with_key_N">`, where N is some number. We use
# this function to generate a more informative error message. We
# return the traceback itself, a message explaining that the
# error occurred in a traced Module's generated forward
# function, and five lines of context surrounding the faulty
# line
@staticmethod
def _generate_error_message(frame_summary: traceback.FrameSummary) -> str:
# auxiliary variables (for readability)
err_lineno = frame_summary.lineno
assert err_lineno is not None
line = frame_summary.line
assert line is not None
err_line_len = len(line)
all_src_lines = linecache.getlines(frame_summary.filename)
# constituent substrings of the error message
tb_repr = traceback.format_exc()
custom_msg = ("Call using an FX-traced Module, "
f"line {err_lineno} of the traced Module's "
"generated forward function:")
before_err = "".join(all_src_lines[err_lineno - 2:err_lineno])
marker = "~" * err_line_len + "~~~ <--- HERE"
err_and_after_err = "\n".join(all_src_lines[err_lineno:err_lineno + 2])
# joined message
return "\n".join([tb_repr, custom_msg, before_err, marker, err_and_after_err])
def __call__(self, obj, *args, **kwargs):
try:
if self.cls_call is not None:
return self.cls_call(obj, *args, **kwargs)
else:
return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc]
except Exception as e:
assert e.__traceback__
topmost_framesummary: traceback.FrameSummary = \
traceback.StackSummary.extract(traceback.walk_tb(e.__traceback__))[-1] # type: ignore[arg-type]
if "eval_with_key" in topmost_framesummary.filename:
print(_WrappedCall._generate_error_message(topmost_framesummary), file=sys.stderr)
raise e.with_traceback(None)
else:
raise e
class ColoGraphModule(torch.fx.GraphModule):
"""
ColoGraphGraphModule is an nn.Module generated from an fx.Graph.
ColoGraphmodule has a ``graph`` attribute, as well as ``code`` and ``forward``
attributes generated from that ``graph``.
The difference between ``ColoGraphModule`` and ``torch.fx.GraphModule`` is that
``ColoGraphModule`` has a ``bind()`` function to bind customized functions
(i.e. activation checkpoint) to ``code`` of ``nn.Module``. If you want to use
specific features in Colossal-AI that are not supported by ``torch.fx.GraphModule``,
you can use ``ColoGraphModule`` instead.
``colossalai.fx.symbolic_trace()`` will return a ``ColoGraphModule`` as default.
.. warning::
When ``graph`` is reassigned, ``code`` and ``forward`` will be automatically
regenerated. However, if you edit the contents of the ``graph`` without reassigning
the ``graph`` attribute itself, you must call ``recompile()`` to update the generated
code.
"""
def __init__(self,
root: Union[torch.nn.Module, Dict[str, Any]],
graph: torch.fx.Graph,
class_name: str = 'GraphModule'):
super().__init__(root, graph, class_name)
def bind(self, ckpt_def, globals):
"""Bind function needed for correctly execute ``GraphModule.forward()``
We need to bind checkpoint functions to ``ColoGraphModule`` so that we could
correctly execute ``GraphModule.forward()``
Args:
ckpt_def (List[str]): definition before the forward function
globals (Dict[str, Any]): global variables
"""
ckpt_code = "\n".join(ckpt_def)
globals_copy = globals.copy()
_exec_with_source(ckpt_code, globals_copy)
func_list = [func for func in globals_copy.keys() if "checkpoint" in func or "pack" in func]
for func in func_list:
tmp_func = globals_copy[func]
setattr(self, func, tmp_func.__get__(self, self.__class__))
del globals_copy[func]
def recompile(self) -> PythonCode:
"""
Recompile this GraphModule from its ``graph`` attribute. This should be
called after editing the contained ``graph``, otherwise the generated
code of this ``GraphModule`` will be out of date.
"""
if SUPPORT_PT_CODEGEN and isinstance(self._graph._codegen, _PyTreeCodeGen):
self._in_spec = self._graph._codegen.pytree_info.in_spec
self._out_spec = self._graph._codegen.pytree_info.out_spec
python_code = self._graph.python_code(root_module='self')
self._code = python_code.src
# To split ckpt functions code and forward code
_code_list = self._code.split("\n")
_fwd_def = [item for item in _code_list if "def forward" in item][0]
_fwd_idx = _code_list.index(_fwd_def)
ckpt_def = _code_list[:_fwd_idx]
self._code = "\n".join(_code_list[_fwd_idx:])
self.bind(ckpt_def, python_code.globals)
cls = type(self)
cls.forward = _forward_from_src(self._code, python_code.globals)
# Determine whether this class explicitly defines a __call__ implementation
# to wrap. If it does, save it in order to have wrapped_call invoke it.
# If it does not, wrapped_call can use a dynamic call to super() instead.
# In most cases, super().__call__ should be torch.nn.Module.__call__.
# We do not want to hold a reference to Module.__call__ here; doing so will
# bypass patching of torch.nn.Module.__call__ done while symbolic tracing.
cls_call = cls.__call__ if "__call__" in vars(cls) else None
if '_wrapped_call' not in vars(cls):
cls._wrapped_call = _WrappedCall(cls, cls_call) # type: ignore[attr-defined]
def call_wrapped(self, *args, **kwargs):
return self._wrapped_call(self, *args, **kwargs)
cls.__call__ = call_wrapped
# reset self._code to original src, otherwise to_folder will be wrong
self._code = python_code.src
return python_code
def to_folder(self, folder: Union[str, os.PathLike], module_name: str = "FxModule"):
"""Dumps out module to ``folder`` with ``module_name`` so that it can be
imported with ``from <folder> import <module_name>``
Args:
folder (Union[str, os.PathLike]): The folder to write the code out to
module_name (str): Top-level name to use for the ``Module`` while
writing out the code
"""
folder = Path(folder)
Path(folder).mkdir(exist_ok=True)
torch.save(self.state_dict(), folder / 'state_dict.pt')
tab = " " * 4
# we add import colossalai here
model_str = f"""
import torch
from torch.nn import *
import colossalai
class {module_name}(torch.nn.Module):
def __init__(self):
super().__init__()
"""
def _gen_model_repr(module_name: str, module: torch.nn.Module) -> Optional[str]:
safe_reprs = [nn.Linear, nn.Conv1d, nn.Conv2d, nn.Conv3d, nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d]
if type(module) in safe_reprs:
return f"{module.__repr__()}"
else:
return None
blobified_modules = []
for module_name, module in self.named_children():
module_str = _gen_model_repr(module_name, module)
if module_str is None:
module_file = folder / f'{module_name}.pt'
torch.save(module, module_file)
blobified_modules.append(module_name)
module_repr = module.__repr__().replace('\r', ' ').replace('\n', ' ')
module_str = f"torch.load(r'{module_file}') # {module_repr}"
model_str += f"{tab*2}self.{module_name} = {module_str}\n"
for buffer_name, buffer in self._buffers.items():
if buffer is None:
continue
model_str += f"{tab*2}self.register_buffer('{buffer_name}', torch.empty({list(buffer.shape)}, dtype={buffer.dtype}))\n"
for param_name, param in self._parameters.items():
if param is None:
continue
model_str += f"{tab*2}self.{param_name} = torch.nn.Parameter(torch.empty({list(param.shape)}, dtype={param.dtype}))\n"
model_str += f"{tab*2}self.load_state_dict(torch.load(r'{folder}/state_dict.pt'))\n"
model_str += f"{_addindent(self.code, 4)}\n"
module_file = folder / 'module.py'
module_file.write_text(model_str)
init_file = folder / '__init__.py'
init_file.write_text('from .module import *')
if len(blobified_modules) > 0:
warnings.warn("Was not able to save the following children modules as reprs -"
f"saved as pickled files instead: {blobified_modules}")