43995ee436
* [feat] Add distributed lamb; minor fixes in DeviceMesh (#5476) * init: add dist lamb; add debiasing for lamb * dist lamb tester mostly done * all tests passed * add comments * all tests passed. Removed debugging statements * moved setup_distributed inside plugin. Added dist layout caching * organize better --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [hotfix] Improve tester precision by removing ZeRO on vanilla lamb (#5576) Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [optim] add distributed came (#5526) * test CAME under LowLevelZeroOptimizer wrapper * test CAME TP row and col pass * test CAME zero pass * came zero add master and worker param id convert * came zero test pass * came zero test pass * test distributed came passed * reform code, Modify some expressions and add comments * minor fix of test came * minor fix of dist_came and test * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * minor fix of dist_came and test * rebase dist-optim * rebase dist-optim * fix remaining comments * add test dist came using booster api --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [optim] Distributed Adafactor (#5484) * [feature] solve conflict; update optimizer readme; * [feature] update optimize readme; * [fix] fix testcase; * [feature] Add transformer-bert to testcase;solve a bug related to indivisible shape (induction in use_zero and tp is row parallel); * [feature] Add transformers_bert model zoo in testcase; * [feature] add user documentation to docs/source/feature. * [feature] add API Reference & Sample to optimizer Readme; add state check for bert exam; * [feature] modify user documentation; * [fix] fix readme format issue; * [fix] add zero=0 in testcase; cached augment in dict; * [fix] fix percision issue; * [feature] add distributed rms; * [feature] remove useless comment in testcase; * [fix] Remove useless test; open zero test; remove fp16 test in bert exam; * [feature] Extract distributed rms function; * [feature] add booster + lowlevelzeroPlugin in test; * [feature] add Start_with_booster_API case in md; add Supporting Information in md; * [fix] Also remove state movement in base adafactor; * [feature] extract factor function; * [feature] add LowLevelZeroPlugin test; * [fix] add tp=False and zero=True in logic; * [fix] fix use zero logic; * [feature] add row residue logic in column parallel factor; * [feature] add check optim state func; * [feature] Remove duplicate logic; * [feature] update optim state check func and percision test bug; * [fix] update/fix optim state; Still exist percision issue; * [fix] Add use_zero check in _rms; Add plugin support info in Readme; Add Dist Adafactor init Info; * [feature] removed print & comments in utils; * [feature] uodate Readme; * [feature] add LowLevelZeroPlugin test with Bert model zoo; * [fix] fix logic in _rms; * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [fix] remove comments in testcase; * [feature] add zh-Han Readme; --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] refractor dist came; fix percision error; add low level zero test with bert model zoo; (#5676) * [feature] daily update; * [fix] fix dist came; * [feature] refractor dist came; fix percision error; add low level zero test with bert model zoo; * [fix] open rms; fix low level zero test; fix dist came test function name; * [fix] remove redundant test; * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] Add Galore (Adam, Adafactor) and distributed GaloreAdamW8bit (#5570) * init: add dist lamb; add debiasing for lamb * dist lamb tester mostly done * all tests passed * add comments * all tests passed. Removed debugging statements * moved setup_distributed inside plugin. Added dist layout caching * organize better * update comments * add initial distributed galore * add initial distributed galore * add galore set param utils; change setup_distributed interface * projected grad precision passed * basic precision tests passed * tests passed; located svd precision issue in fwd-bwd; banned these tests * Plugin DP + TP tests passed * move get_shard_dim to d_tensor * add comments * remove useless files * remove useless files * fix zero typo * improve interface * remove moe changes * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix import * fix deepcopy * update came & adafactor to main * fix param map * fix typo --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Hotfix] Remove one buggy test case from dist_adafactor for now (#5692) Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: chongqichuizi875 <107315010+chongqichuizi875@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: duanjunwen <54985467+duanjunwen@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> |
||
---|---|---|
.. | ||
README.md | ||
__init__.py | ||
api.py | ||
comm_spec.py | ||
layout.py | ||
layout_converter.py | ||
misc.py | ||
sharding_spec.py | ||
utils.py |
README.md
đĸ Distributed Tensor
đ Table of Contents
đ Introduction
Distributed tensor is a type of tensor that is distributed across multiple devices. It is a wrapper of PyTorch tensor, and it is used to support distributed training. It can represent the device topology and tensor placement over the devices in the topology. It also provides a set of APIs to manipulate the distributed tensor.
đ Design
Our implementation is inspired by the work Alpa, which unifies data parallelism and tensor parallelism as intra-op parallelism. It uses notations S
to represent the sharded dimension and R
to represent the replicated dimension. For example, given a 2D matrix, [S, R]
represents the tensor is sharded over the first dimension.
Each sharded dimension will have a subscript to represent its placement over the devices. Assuming we have 4 GPUs and the GPUs are arranged in a 2 x 2 manner. Let's say we have a 2D matrix like below:
[1, 2, 3, 4 ]
A = [4, 5, 6, 7 ]
[8, 9, 10, 11]
[12, 13, 14, 15]
[S0, R]
would mean that the first dimension is sharded over the rows in the device topology.
| --------------------âââââââââââââââââââââ-|
| | |
| [1, 2, 3, 4 ] | [1, 2, 3, 4 ] |
| [4, 5, 6, 7 ] | [4, 5, 6, 7 ] |
| | |
| --------------------ââââââââââââââââââ-----
| | |
| [8, 9, 10, 11] | [8, 9, 10, 11] |
| [12, 13, 14, 15] | [12, 13, 14, 15] |
| | |
| --------------------ââââââââââââââââââ-----
[S01, R]
would mean that the first dimension is sharded over both the row and column in the device topology.
| --------------------âââââââââââââââââââââ-|
| | |
| [1, 2, 3, 4 ] | [4, 5, 6, 7 ] |
| | |
| --------------------ââââââââââââââââââ-----
| | |
| [8, 9, 10, 11] | [12, 13, 14, 15] |
| | |
| --------------------ââââââââââââââââââ-----
đ¨ Usage
A sample API usage is given below.
import torch
import colossalai
from colossalai.device.device_mesh import DeviceMesh
from colossalai.tensor.d_tensor import DTensor, ShardingSpec
colossalai.launch_from_torch()
# define your device mesh
# assume you have 4 GPUs
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
# define a tensor
a = torch.rand(16, 32).cuda()
# create sharding spec for the tensor
# assume the sharding spec is [S0, R]
dim_partition_dict = {0: [0]}
sharding_spec = ShardingSpec(a.dim(), dim_partition_dict)
# create a distributed tensor
d_tensor = DTensor(a, device_mesh, sharding_spec)
print(d_tensor)
global_tensor = d_tensor.to_global()
print(global_tensor)
đ Progress Log
- Support layout conversion
- Support sharding on 2D device mesh
- Support sharding on 3D device mesh
- Support sharding 4D device mesh
- Support sharding info saving and offline tensor merge (we can save tensor as dtensor and gather the tensors back to the global tensor based on the sharding info in a single process in CPU, useful for distributed training checkpoint load and save.)