ColossalAI/colossalai/auto_parallel/solver/solver.py

463 lines
18 KiB
Python

import warnings
import time
import numpy as np
import multiprocessing
from torch.fx.node import Node
from torch.fx.graph import Graph
from . import GraphAnalyser
from colossalai.auto_parallel.solver.cost_graph import CostGraph
from colossalai.auto_parallel.solver.strategies_constructor import StrategiesConstructor
from typing import Dict
from .constants import INFINITY_COST
try:
import pulp
from pulp import LpVariable, LpProblem, LpMinimize, lpSum, lpDot, LpStatus
except:
warnings.warn(f'please install the pulp')
__all___ = ['Solver']
class Solver:
def __init__(self,
graph: Graph,
strategies_constructor: StrategiesConstructor,
cost_graph: CostGraph,
graph_analyser: GraphAnalyser,
memory_budget: float = -1.0,
solution_numbers: int = 1,
memory_increasing_coefficient: float = 1.3):
'''
Solver class will integrate information provided by the components and use ILP solver to find a possible optimal strategies combination for target computing graph.
Argument:
graph: The computing graph to be optimized.
strategies_constructor: It will provide all the possible strategies for each node in the computing graph.
cost_graph: A graph data structure to simplify the edge cost graph.
graph_analyser: graph_analyser will analyse the graph to obtain the variable liveness information, which will be used to generate memory constraints.
memory_budget: Memory constraint for the solution.
solution_numbers: If solution_numbers is larger than one, solver will us a serious of solutions based on different memory budget.
memory_increasing_coefficient: If solution_numbers is larger than one, we will use this coefficient to generate new memory budget.
'''
self.graph = graph
self.strategies_constructor = strategies_constructor
self.cost_graph = cost_graph
self.graph_analyser = graph_analyser
self.nodes = list(self.graph.nodes)
self.leaf_strategies = self.strategies_constructor.leaf_strategies
self.strategy_map = self.strategies_constructor.strategy_map
self.memory_budget = memory_budget
self.solution_numbers = solution_numbers
if self.solution_numbers > 1:
self.memory_increasing_coefficient = memory_increasing_coefficient
else:
self.memory_increasing_coefficient = 1
self.liveness_list = self.graph_analyser.liveness_analysis()
self.node_index_dict = self._generate_node_index_dict()
# The last solution vector of auto sharding.
self.last_s_val = None
# The last objective value of the best ILP solution.
self.last_objective = None
def _recover_merged_node_strategy(self):
'''
During cost graph constructing, some nodes, such as unary element-wise node or ReshapeOp, were merged into the previous node.
Therefore, the index of those strategies are copied from the previous node. This method is used to recover the strategy index of those merged
node.
'''
for node_index, node in enumerate(self.graph.nodes):
if node.strategies_vector.check_merge():
# the merged node has only one input, and its strategies follow the input sharding strategy
input_strategies_vector = node.args[0].strategies_vector
input_best_strategy_index = self.last_s_val[node_index - 1]
input_sharding_spec = input_strategies_vector[input_best_strategy_index].output_sharding_spec
for strategy_index, strategy in enumerate(node.strategies_vector):
if strategy.input_shardings[0].sharding_sequence == input_sharding_spec.sharding_sequence:
self.last_s_val[node_index] = strategy_index
break
def _generate_node_index_dict(self) -> Dict[Node, int]:
node_index_dict = {}
for index, strategies_vector in enumerate(self.leaf_strategies):
node_index_dict[strategies_vector.node] = index
return node_index_dict
def _prepare_data_for_solver(self):
'''
Extract information from components for solver.
'''
node_nums = len(self.leaf_strategies)
memory_budget = self.memory_budget
# prepare strategies_len
strategies_len = []
for node in self.nodes:
strategies_len.append(self.cost_graph.node_lens[node])
strategies_len = np.array(strategies_len)
# prepare following_nodes
following_nodes = self.cost_graph.following_dict
index_following_nodes = {}
for src, target in following_nodes.items():
src_index = self.node_index_dict[src]
target_index = self.node_index_dict[target]
index_following_nodes[src_index] = target_index
following_nodes = index_following_nodes
for index in range(node_nums):
if index not in following_nodes:
following_nodes[index] = -1
# prepare edge_pairs and resharding costs
edge_pairs = []
resharding_costs = []
for pairs, edge_cost in self.cost_graph.edge_costs.items():
src_node = pairs[0]
dst_node = pairs[1]
src_node_index = self.node_index_dict[src_node]
dst_node_index = self.node_index_dict[dst_node]
edge_pairs.append(src_node_index)
edge_pairs.append(dst_node_index)
for i in range(strategies_len[src_node_index]):
for j in range(strategies_len[dst_node_index]):
resharding_costs.append(edge_cost[(i, j)])
edge_pairs = np.array(edge_pairs)
resharding_costs = np.array(resharding_costs)
# prepare liveness_set
liveness_set = self.liveness_list
# omit alias_set now
alias_set = None
alias_convert_costs = None
# prepare compute_costs, communication_costs and memory_costs
compute_costs = []
communication_costs = []
memory_costs = []
extra_node_costs = self.cost_graph.extra_node_costs
for strategies_vector in self.leaf_strategies:
node = strategies_vector.node
for index, strategy in enumerate(strategies_vector):
compute_costs.append(strategy.compute_cost)
# node in extra_node_costs means it has some extra communication
# cost from node merging, so we need to add those extra communication
# cost into
if node in extra_node_costs:
origin_communication_cost = strategy.communication_cost
extra_node_cost = extra_node_costs[node][index]
communication_cost = origin_communication_cost + extra_node_cost
communication_costs.append(communication_cost)
else:
communication_costs.append(strategy.communication_cost)
# temporarily we just consider the forward memory cost
memory_cost = strategy.memory_cost
if isinstance(memory_cost, tuple):
memory_costs.append(memory_cost[0])
else:
memory_costs.append(memory_cost)
compute_costs = np.array(compute_costs)
communication_costs = np.array(communication_costs)
memory_costs = np.array(memory_costs)
# omit initial value for nodes
s_init_np = None
return node_nums, memory_budget, strategies_len, following_nodes, edge_pairs, alias_set, liveness_set, compute_costs, communication_costs, memory_costs, resharding_costs, alias_convert_costs, s_init_np
def _call_solver_serialized_args(self,
node_nums,
memory_budget,
strategies_len,
following_nodes,
edge_pairs,
alias_set,
liveness_set,
compute_costs,
communication_costs,
memory_costs,
resharding_costs,
alias_convert_costs,
s_init_np=None):
"""
Call the solver with serialized arguments.
"""
tic = time.time()
for x in [strategies_len, edge_pairs, compute_costs, communication_costs, memory_costs, resharding_costs]:
assert isinstance(x, np.ndarray)
assert len(strategies_len) == node_nums, "strategies_len"
def get_non_zero_index(binary_vector):
"""
Get the index of non-zero item in a vector.
"""
ct = 0
ret = None
for i, elem in enumerate(binary_vector):
if pulp.value(elem):
ret = i
ct += 1
assert ct == 1
return ret
# 0. Unpack flatten numpy arrays
s_follow = following_nodes
E = edge_pairs.reshape((-1, 2)) # noqa
r = []
pt = 0
edge_set = set()
for (i, j) in E:
prod_length = strategies_len[i] * strategies_len[j]
if (i, j) in edge_set:
raise ValueError(f"Duplicated edges: {(i, j)}")
edge_set.add((i, j))
r.append(resharding_costs[pt:pt + prod_length])
pt += prod_length
assert pt == len(resharding_costs)
######################
# omit alias set now #
######################
# A = alias_set.reshape((-1, 2)) # noqa
# for (i, j) in A:
# prod_length = strategies_len[i] * strategies_len[j]
# v.append(alias_convert_costs[pt:pt + prod_length])
# pt += prod_length
# assert pt == len(alias_convert_costs)
# L = [] # noqa
# pt = node_nums
# for i in range(node_nums):
# length = liveness_set[i]
# L.append(liveness_set[pt:pt + length])
# pt += length
# assert pt == len(liveness_set)
v = []
pt = 0
c = []
d = []
m = []
pt = 0
for i in range(node_nums):
length = strategies_len[i]
c.append(compute_costs[pt:pt + length])
d.append(communication_costs[pt:pt + length])
m.append(memory_costs[pt:pt + length])
pt += length
assert pt == len(compute_costs), f"{pt} == {len(compute_costs)}"
assert pt == len(communication_costs), f"{pt} == {len(communication_costs)}"
assert pt == len(memory_costs), f"{pt} == {len(memory_costs)}"
# 1. Create variables
#############################
# create variables for node #
#############################
s = []
num_nodes = 0
reverse_follow_backpatch = []
for i in range(node_nums):
if s_follow[i] < 0:
if strategies_len[i] == 1:
s.append([1])
else:
num_nodes += 1
s.append(LpVariable.matrix(f"s[{i}]", (range(strategies_len[i]),), cat="Binary"))
else:
if s_follow[i] < len(s):
s.append(s[s_follow[i]])
else:
s.append(None)
reverse_follow_backpatch.append(i)
for i in reverse_follow_backpatch:
s[i] = s[s_follow[i]]
#############################
# create variables for edge #
#############################
e = []
num_edges = 0
for (idx, (i, j)) in enumerate(E):
if len(s[i]) == 1:
e.append(s[j])
elif len(s[j]) == 1:
e.append(s[i])
else:
num_edges += 1
e.append(LpVariable.matrix(f"e[{i},{j}]", (range(len(s[i]) * len(s[j])),), cat="Binary"))
assert len(e[idx]) == len(r[idx])
# 2. Set initial value
######################################
# set a initial value for warm start #
######################################
if s_init_np is not None:
s_init = s_init_np.reshape((-1, 3))
for (idx, value, fix) in s_init:
for i in range(len(s[idx])):
s[idx][i].setInitialValue(i == value)
if fix:
s[idx][i].fixValue()
# 3. Objective
prob = LpProblem("myProblem", LpMinimize)
###################################################################
# computing the node cost(computing cost and communication cost) #
###################################################################
obj = 0
for i in range(node_nums):
obj += lpDot(s[i], c[i]) + lpDot(s[i], d[i])
#############################################
# computing the edge cost(resharding cost) #
#############################################
for i in range(len(E)):
obj += lpDot(e[i], r[i])
prob += obj
# 4. Constraints
# (a). specified by `cat="Binary"`
# (b)
#################################################
# make sure each node only choose one strategy #
#################################################
for i in range(node_nums):
if s_follow[i] < 0:
prob += lpSum(s[i]) == 1
# (c)
#################################################
# compute memory consumption with liveness set #
#################################################
if memory_budget > 0:
for liveness_stage in liveness_set:
mem = 0
for live_variable in liveness_stage.unique_live_vars:
node_index = self.node_index_dict[live_variable.node]
mem += lpSum(s[node_index][j] * m[node_index][j] for j in range(len(s[node_index])))
prob += mem <= memory_budget
# (d). specified by `cat="Binary"`
for (idx, (i, j)) in enumerate(E):
if strategies_len[i] == 1 or strategies_len[j] == 1:
continue
# (e)
prob += lpSum(e[idx]) == 1
# (f)
for row in range(len(s[i])):
C = len(s[j]) # noqa
prob += lpSum(e[idx][row * C + col] for col in range(0, C)) <= s[i][row]
# (g)
for col in range(len(s[j])):
R = len(s[i]) # noqa
C = len(s[j]) # noqa
prob += lpSum(e[idx][row * C + col] for row in range(0, R)) <= s[j][col]
# (h)
######################
# omit alias set now #
######################
# alias_set = set()
# for (idx, (i, j)) in enumerate(A):
# R = len(s[i]) # noqa
# C = len(s[j]) # noqa
# if (i, j) in alias_set:
# raise ValueError(f"Duplicated edges: {(i, j)}")
# alias_set.add((i, j))
# alias_set.add((j, i))
# for row in range(len(s[i])):
# for col in range(len(s[j])):
# if v[idx][row * C + col] > 0.5:
# prob += s[i][row] + s[j][col] <= 1
verbose = True
msg = verbose
time_limit = 600
assert "COIN_CMD" in pulp.listSolvers(
onlyAvailable=True), ("Please install ILP solvers by 'sudo apt install coinor-cbc'")
solver = pulp.COIN_CMD(mip=True, msg=msg, timeLimit=time_limit, threads=multiprocessing.cpu_count())
# solver = pulp.GLPK_CMD(mip=True, msg=msg, timeLimit=time_limit)
prob.solve(solver)
status = prob.status
objective = pulp.value(prob.objective)
objective = float(objective) if objective is not None else -1.0
if verbose:
print(f"ILP Status: {LpStatus[status]}\tObjective: {objective}\t"
f"Time: {time.time() - tic}")
print(f"#nodes: {num_nodes}, #edges: {num_edges}")
if prob.status in [pulp.LpStatusInfeasible]:
raise RuntimeError("Cannot run the function under the given memory budget. "
"Please increase the memory budget.")
# Get and check results
s_val = np.full((node_nums,), -1, dtype=np.int32)
for i in range(node_nums):
s_val[i] = get_non_zero_index(s[i])
e_val = np.full((len(E),), -1, dtype=np.int32)
for (idx, (i, j)) in enumerate(E):
e_val[idx] = get_non_zero_index(e[idx])
i_spec_index = e_val[idx] // len(s[j])
j_spec_index = e_val[idx] % len(s[j])
assert i_spec_index == s_val[i], f"e_val[{i}][{j}]"
assert j_spec_index == s_val[j], f"e_val[{i}][{j}]"
if verbose and r[idx][e_val[idx]] > 0:
print(f"Edge cost {(i, j)} : {r[idx][e_val[idx]]}")
self.last_s_val = list(s_val)
self._recover_merged_node_strategy()
self.last_objective = objective
if objective > INFINITY_COST:
warnings.warn("Detect unexpected behaviors in the auto-sharding pass.")
return self.last_s_val, e_val, self.last_objective, status
def call_solver_serialized_args(self):
"""
Call the solver with serialized arguments and handle python errors. Additionally,
we could give a serious of solutions with different memory budget.
"""
if self.solution_numbers == 1:
args = self._prepare_data_for_solver()
ret = self._call_solver_serialized_args(*args)
return ret
origin_memory_budget = self.memory_budget
memory_budget_list = [
origin_memory_budget * self.memory_increasing_coefficient**i for i in range(self.solution_numbers)
]
ret_list = []
for memory_budget in memory_budget_list:
self.memory_budget = memory_budget
args = self._prepare_data_for_solver()
ret = self._call_solver_serialized_args(*args)
ret_list.append(ret)
return ret_list