ColossalAI/colossalai/auto_parallel/solver/sharding_strategy.py

269 lines
10 KiB
Python

from dataclasses import dataclass
from abc import ABC, abstractmethod
from enum import Enum
import operator
import torch
from functools import reduce
from colossalai.device.device_mesh import DeviceMesh
from colossalai.tensor.sharding_spec import ShardingSpec
from typing import Dict, List, Union, Tuple, Any
from torch.fx.node import Node
from .constants import *
__all__ = ['ShardingStrategy', 'StrategiesVector']
@dataclass
class ShardingStrategy:
'''
ShardingStrategy is a structure containing sharding strategies of inputs and output of this node
and costs information using in solver.
Argument:
name(str): express the sharding strategies in string, such as 'S0S1 = S0R x RS1'.
output_sharding_spec(ShardingSpec): ShardingSpec of the output node.
compute_cost(float): Computation cost to complete this strategy.(default to 0)
communication_cost(float): Communication cost to complete this strategy.(default to 0)
memory_cost(float): Memory cost of the output node using this strategy.(default to 0)
resharding_costs(Dict[int, List[float]]): resharding_cost[i][j] means the cost of i-th argument in the output node argument list
with j-th strategy in its strategies_vector transforms to sharding spec wanted in this
strategy.(default to None)
input_shardings(List(ShardingSpec)): The ShardingSpecs of the input nodes.
'''
name: str
# TODO: output of fx node,such as torch.var_mean, could be a tuple, so we cannot simply suppose it is a tensor.
output_sharding_spec: Union[ShardingSpec, Tuple[ShardingSpec]]
compute_cost: float = 0.
communication_cost: float = 0.
memory_cost: float = 0.
resharding_costs: Dict[Node, List[float]] = None
# sometimes the input node could be a tuple of nodes, but most of op won't accept tuple of node as input.
# Therefore, we could process them at the specific op(operator.getitem)
input_shardings: List[ShardingSpec] = None
class OperationDataType(Enum):
"""
An operation can come from the argument list of an operator or the parameter list of a module.
"""
ARG = 0
PARAM = 1
OUTPUT = 2
@dataclass
class OperationData:
"""
OperationData is the data related to an operator, the data can be the operand or the output.
Args:
name (str): the name of the operation-related data
type (OperationDataType): the type of the operation data
data (torch.Tensor): the value for this data, usually it is a meta tensor.
logical_shape (Tuple[int]): the logical shape of the data, it can be different from the its actual shape in memory.
"""
name: str
type: OperationDataType
data: torch.Tensor
logical_shape: Tuple[int] = None
def __post_init__(self):
# if no logical shape is specified, use the data shape as the logical shape
if self.logical_shape is None:
self.logical_shape = self.data.shape
@dataclass
class TrainCycleItem:
"""
TrainCycleItem is a dataclass to store the items which have different values for the forward and backward pass
in a training iteration.
Args:
fwd (float): the item for the forward pass
bwd (float): the item for the backward pass
"""
fwd: Any
bwd: Any
total: Any
class CommunicationType(Enum):
FWD_ALL_REDUCE = 0
BWD_ALL_REDUCE = 1
@dataclass
class CommunicationAction:
"""
The actions
"""
type: CommunicationType
mesh_dim: int
@dataclass
class ShardingStrategy_V2:
"""
ShardingStrategy is a dataclass to store the meta information on tensor sharding for a node.
Args:
name (str): express the sharding strategies in string, such as 'S0S1 = S0R x RS1'.
output_sharding_spec (ShardingSpec): ShardingSpec of the output node.
compute_cost (TrainCycleItem): Computation cost to complete this strategy. (default to None)
communication_cost (TrainCycleItem): Communication cost to complete this strategy. (default to None)
memory_cost (TrainCycleItem): Memory cost of the output node using this strategy. (default to None)
input_sharding_specs (List(ShardingSpec)): The ShardingSpecs of the input nodes.
input_resharding_costs (Dict[int, List[float]]): resharding_cost[i][j] means the cost of i-th argument in the output node argument list
with j-th strategy in its strategies_vector transforms to sharding spec wanted in this
strategy.(default to None)
"""
name: str
sharding_specs: Dict[OperationData, ShardingSpec] = None
compute_cost: TrainCycleItem = None
communication_cost: TrainCycleItem = None
memory_cost: TrainCycleItem = None
input_resharding_costs: Dict[OperationData, List[float]] = None
communication_actions: Dict[OperationData, List[CommunicationAction]] = None
@property
def input_sharding_specs(self) -> Dict[OperationData, ShardingSpec]:
specs = {}
specs.update(self._get_sharding_spec(OperationDataType.ARG))
specs.update(self._get_sharding_spec(OperationDataType.PARAM))
return specs
@property
def argument_sharding_specs(self) -> Dict[OperationData, ShardingSpec]:
return self._get_sharding_spec(OperationDataType.ARG)
@property
def param_sharding_specs(self) -> Dict[OperationData, ShardingSpec]:
return self._get_sharding_spec(OperationDataType.PARAM)
@property
def output_sharding_specs(self) -> Dict[OperationData, ShardingSpec]:
return self._get_sharding_spec(OperationDataType.OUTPUT)
def _get_sharding_spec(self, operation_data_type: OperationDataType):
specs = {k: v for k, v in self.sharding_specs.items() if k.type == operation_data_type}
return specs
class StrategyGenerator_V2(ABC):
"""
StrategyGenerator is used to generate the same group of sharding strategies.
TODO: remove the original strategy_generator.py after refactoring
"""
def __init__(self, device_mesh: DeviceMesh):
self.device_mesh = device_mesh
def update_communication_cost(self, strategy: ShardingStrategy_V2) -> ShardingStrategy_V2:
"""
Compute the communication cost involved in the forward and backward iteration.
"""
comm_cost = TrainCycleItem(fwd=0, bwd=0)
def _compute_and_add(data: OperationData, action: CommunicationAction):
sharded_shape = strategy.sharding_specs[data].get_sharded_shape_per_device()
dtype = operand.data.dtype
size_per_elem_bytes = torch.tensor([], dtype=dtype).element_size()
num_bytes = size_per_elem_bytes * reduce(operator.mul, sharded_shape)
cost = self.device_mesh.all_reduce_cost(num_bytes=num_bytes, mesh_dim=action.mesh_dim)
# compute the fwd
if action.type == CommunicationType.FWD_ALL_REDUCE:
comm_cost.fwd += cost
elif action.type == CommunicationType.BWD_ALL_REDUCE:
comm_cost.fwd += cost
else:
raise ValueError(f"Found unknown CommunicationType {action.type}")
# check if communication action exists
# if so, loop over each action and compute the cost of each action
if strategy.communication_actions is not None:
for operand, actions in strategy.communication_actions:
for action in actions:
_compute_and_add(operand, action)
# update the communication cost attribute in-place
strategy.communication_cost = comm_cost
return strategy
@abstractmethod
def update_compute_cost(self, strategy: ShardingStrategy_V2) -> ShardingStrategy_V2:
"""
Customize this method to compute the computation flops.
"""
pass
@abstractmethod
def update_memory_cost(self, strategy: ShardingStrategy_V2) -> ShardingStrategy_V2:
"""
Customize this method to compute the memory cost in bytes.
"""
pass
@abstractmethod
def generate(self, operand_mapping: Dict[str, OperationData]) -> List[ShardingStrategy_V2]:
"""
Generate all possible sharding strategies for this operation.
"""
pass
@abstractmethod
def validate(self, *args, **kwargs) -> bool:
"""
Validate if the operands are of desired shape.
If True, means this generator can be used for the current operation.
"""
pass
class StrategiesVector(list):
'''
Each node in fx graph will have a corresponding StrategiesVector, to store all the possible
strategies of the node.
Argument:
node (Node): node for which the list of sharding strategies are generated.
'''
def __init__(self, node: Node):
super().__init__()
self.node = node
# fetch its input and output nodes
# TODO: placeholder input nodes
self.predecessor_nodes = list(node._input_nodes.keys())
self.successor_nodes = list(node.users.keys())
def check_merge(self):
merge_label = False
if self.node.op == 'call_module':
target = self.node.target
root_module = self.node.graph.owning_module
submod = root_module.get_submodule(target)
submod_type = type(submod)
# merge elementwise module node into source nodes
# we could merge element-wise op, because the output sharding spec is always same as the input sharding spec.
if submod_type in ELEMENTWISE_MODULE_OP:
merge_label = True
if self.node.op == 'call_function':
# we could merge element-wise op, because the output sharding spec is always same as the input sharding spec.
if self.node.target in ELEMENTWISE_FUNC_OP:
merge_label = True
# we could merge bcast op if the rhs is a scalar, because it will fall back to the element-wise case.
if self.node.target in BCAST_FUNC_OP and len(self.predecessor_nodes) == 1:
merge_label = True
# we could merge reshape op, because the output sharding spec of reshape op is always fully replicated.
if self.node.target in RESHAPE_FUNC_OP:
merge_label = True
return merge_label