Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

37 lines
1.3 KiB

import os
from .builder import Builder
from .utils import append_nvcc_threads, get_cuda_cc_flag
class ScaledUpperTrainglemaskedSoftmaxBuilder(Builder):
NAME = "scaled_upper_triangle_masked_softmax"
PREBUILT_IMPORT_PATH = "colossalai._C.scaled_upper_triangle_masked_softmax"
def __init__(self):
super().__init__(name=ScaledUpperTrainglemaskedSoftmaxBuilder.NAME, prebuilt_import_path=ScaledUpperTrainglemaskedSoftmaxBuilder.PREBUILT_IMPORT_PATH)
def include_dirs(self):
return [
self.csrc_abs_path("kernels/include"),
self.get_cuda_home_include()
]
def sources_files(self):
ret = [
self.csrc_abs_path(fname)
for fname in ['scaled_upper_triang_masked_softmax.cpp', 'scaled_upper_triang_masked_softmax_cuda.cu']
]
return ret
def cxx_flags(self):
return ['-O3'] + self.version_dependent_macros
def nvcc_flags(self):
extra_cuda_flags = [
'-U__CUDA_NO_HALF_OPERATORS__', '-U__CUDA_NO_HALF_CONVERSIONS__', '--expt-relaxed-constexpr',
'--expt-extended-lambda'
]
extra_cuda_flags.extend(get_cuda_cc_flag())
ret = ['-O3', '--use_fast_math'] + extra_cuda_flags
return append_nvcc_threads(ret)