You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/kernel/triton/no_pad_rotary_embedding.py

660 lines
20 KiB

import warnings
from typing import Optional
import torch
import triton
import triton.language as tl
"""
# Base autotune if needed
@triton.autotune(
configs=[
triton.Config({'BLOCK_HEAD':4,"BLOCK_TOKENS":4,},num_warps=4),
triton.Config({'BLOCK_HEAD':4,"BLOCK_TOKENS":8,},num_warps=8),
triton.Config({'BLOCK_HEAD':8,"BLOCK_TOKENS":8,},num_warps=8),
triton.Config({'BLOCK_HEAD':4,"BLOCK_TOKENS":4,},num_warps=16),
triton.Config({'BLOCK_HEAD':4,"BLOCK_TOKENS":4,},num_warps=32),
triton.Config({'BLOCK_HEAD':16,"BLOCK_TOKENS":16,},num_warps=4),
triton.Config({'BLOCK_HEAD':8,"BLOCK_TOKENS":16,},num_warps=8),
],
key=['HEAD_DIM','q_total_tokens','Q_HEAD_NUM']
)
"""
@triton.jit
def rotary_embedding_kernel(
q,
k,
cos,
sin,
q_token_stride,
q_head_stride,
k_token_stride,
k_head_stride,
head_dim_stride,
cos_token_stride,
cos_stride,
q_total_tokens,
Q_HEAD_NUM: tl.constexpr,
KV_GROUP_NUM: tl.constexpr,
HEAD_DIM: tl.constexpr,
BLOCK_TOKENS: tl.constexpr, # token range length
):
cur_head_idx = tl.program_id(0)
cur_token_block_idx = tl.program_id(1)
tokens_range = cur_token_block_idx * BLOCK_TOKENS + tl.arange(0, BLOCK_TOKENS)
dim_range0 = tl.arange(0, HEAD_DIM // 2)
dim_range1 = tl.arange(HEAD_DIM // 2, HEAD_DIM)
off_cos_sin = tokens_range[:, None] * cos_token_stride + dim_range0[None, :] * cos_stride
loaded_cos = tl.load(cos + off_cos_sin, mask=(tokens_range[:, None] < q_total_tokens), other=0.0)
loaded_sin = tl.load(sin + off_cos_sin, mask=(tokens_range[:, None] < q_total_tokens), other=0.0)
off_q0 = (
tokens_range[:, None, None] * q_token_stride
+ cur_head_idx * q_head_stride
+ dim_range0[None, None, :] * head_dim_stride
)
off_q1 = (
tokens_range[:, None, None] * q_token_stride
+ cur_head_idx * q_head_stride
+ dim_range1[None, None, :] * head_dim_stride
)
loaded_q0 = tl.load(
q + off_q0,
mask=((cur_head_idx < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
other=0.0,
)
loaded_q1 = tl.load(
q + off_q1,
mask=((cur_head_idx < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
other=0.0,
)
out_q0 = loaded_q0 * loaded_cos[:, None, :] - loaded_q1 * loaded_sin[:, None, :]
out_q1 = loaded_q0 * loaded_sin[:, None, :] + loaded_q1 * loaded_cos[:, None, :]
tl.store(
q + off_q0,
out_q0,
mask=((cur_head_idx < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
)
tl.store(
q + off_q1,
out_q1,
mask=((cur_head_idx < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
)
handle_kv = cur_head_idx % KV_GROUP_NUM == 0
if handle_kv:
k_head_idx = cur_head_idx // KV_GROUP_NUM
off_k0 = (
tokens_range[:, None, None] * k_token_stride
+ k_head_idx * k_head_stride
+ dim_range0[None, None, :] * head_dim_stride
)
off_k1 = (
tokens_range[:, None, None] * k_token_stride
+ k_head_idx * k_head_stride
+ dim_range1[None, None, :] * head_dim_stride
)
loaded_k0 = tl.load(
k + off_k0,
mask=(tokens_range[:, None, None] < q_total_tokens),
other=0.0,
)
loaded_k1 = tl.load(
k + off_k1,
mask=(tokens_range[:, None, None] < q_total_tokens),
other=0.0,
)
out_k0 = loaded_k0 * loaded_cos[:, None, :] - loaded_k1 * loaded_sin[:, None, :]
out_k1 = loaded_k0 * loaded_sin[:, None, :] + loaded_k1 * loaded_cos[:, None, :]
tl.store(
k + off_k0,
out_k0,
mask=(tokens_range[:, None, None] < q_total_tokens),
)
tl.store(
k + off_k1,
out_k1,
mask=(tokens_range[:, None, None] < q_total_tokens),
)
@triton.jit
def fused_rotary_embedding_kernel(
q,
k,
cos,
sin,
kv_cache,
BLOCK_TABLES,
context_lengths,
q_token_stride,
q_head_stride,
k_token_stride,
k_head_stride,
head_dim_stride,
cos_token_stride,
cos_stride,
cacheb_stride,
cacheh_stride,
cachebs_stride,
cached_stride,
bts_stride,
btb_stride,
block_size,
q_total_tokens,
Q_HEAD_NUM: tl.constexpr,
K_HEAD_NUM: tl.constexpr,
HEAD_DIM: tl.constexpr,
BLOCK_HEAD: tl.constexpr,
BLOCK_TOKENS: tl.constexpr,
):
block_head_index = tl.program_id(0)
block_token_index = tl.program_id(1)
tokens_range = block_token_index * BLOCK_TOKENS + tl.arange(0, BLOCK_TOKENS)
head_range = block_head_index * BLOCK_HEAD + tl.arange(0, BLOCK_HEAD)
dim_range0 = tl.arange(0, HEAD_DIM // 2)
dim_range1 = tl.arange(HEAD_DIM // 2, HEAD_DIM)
off_q0 = (
tokens_range[:, None, None] * q_token_stride
+ head_range[None, :, None] * q_head_stride
+ dim_range0[None, None, :] * head_dim_stride
)
off_q1 = (
tokens_range[:, None, None] * q_token_stride
+ head_range[None, :, None] * q_head_stride
+ dim_range1[None, None, :] * head_dim_stride
)
off_k0 = (
tokens_range[:, None, None] * k_token_stride
+ head_range[None, :, None] * k_head_stride
+ dim_range0[None, None, :] * head_dim_stride
)
off_k1 = (
tokens_range[:, None, None] * k_token_stride
+ head_range[None, :, None] * k_head_stride
+ dim_range1[None, None, :] * head_dim_stride
)
loaded_q0 = tl.load(
q + off_q0,
mask=((head_range[None, :, None] < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
other=0.0,
)
loaded_q1 = tl.load(
q + off_q1,
mask=((head_range[None, :, None] < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
other=0.0,
)
loaded_k0 = tl.load(
k + off_k0,
mask=((head_range[None, :, None] < K_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
other=0.0,
)
loaded_k1 = tl.load(
k + off_k1,
mask=((head_range[None, :, None] < K_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
other=0.0,
)
off_cos_sin = tokens_range[:, None] * cos_token_stride + dim_range0[None, :] * cos_stride
loaded_cos = tl.load(cos + off_cos_sin, mask=(tokens_range[:, None] < q_total_tokens), other=0.0)
loaded_sin = tl.load(sin + off_cos_sin, mask=(tokens_range[:, None] < q_total_tokens), other=0.0)
out_q0 = loaded_q0 * loaded_cos[:, None, :] - loaded_q1 * loaded_sin[:, None, :]
out_q1 = loaded_q0 * loaded_sin[:, None, :] + loaded_q1 * loaded_cos[:, None, :]
out_k0 = loaded_k0 * loaded_cos[:, None, :] - loaded_k1 * loaded_sin[:, None, :]
out_k1 = loaded_k0 * loaded_sin[:, None, :] + loaded_k1 * loaded_cos[:, None, :] # total_tokens, head_num, head_dim
past_kv_seq_len = tl.load(context_lengths + tokens_range, mask=(tokens_range < q_total_tokens)) - 1
last_block_idx = past_kv_seq_len // block_size
block_table_ptr = BLOCK_TABLES + tokens_range * bts_stride
block_ids = tl.load(block_table_ptr + last_block_idx * btb_stride, mask=(tokens_range < q_total_tokens))
offsets_in_last_block = (past_kv_seq_len % block_size) * cachebs_stride
kv_range0 = (
block_ids[:, None, None, None] * cacheb_stride
+ head_range[None, :, None, None] * cacheh_stride
+ offsets_in_last_block[:, None, None, None]
+ dim_range0[None, None, None, :] * cached_stride
)
kv_range1 = (
block_ids[:, None, None, None] * cacheb_stride
+ head_range[None, :, None, None] * cacheh_stride
+ offsets_in_last_block[:, None, None, None]
+ dim_range1[None, None, None, :] * cached_stride
)
tl.store(
kv_cache + kv_range0,
out_k0[:, :, None, :],
)
tl.store(
kv_cache + kv_range1,
out_k1[:, :, None, :],
)
# concat
tl.store(
q + off_q0,
out_q0,
mask=((head_range[None, :, None] < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
)
tl.store(
q + off_q1,
out_q1,
mask=((head_range[None, :, None] < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
)
tl.store(
k + off_k0,
out_k0,
mask=((head_range[None, :, None] < K_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
)
tl.store(
k + off_k1,
out_k1,
mask=((head_range[None, :, None] < K_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
)
@triton.jit
def fused_rotary_embedding_kernel_v2(
q,
k,
cos,
sin,
kv_cache,
BLOCK_TABLES,
context_lengths,
q_token_stride,
q_head_stride,
k_token_stride,
k_head_stride,
head_dim_stride,
cos_token_stride,
cos_stride,
cacheb_stride,
cacheh_stride,
cachebs_stride,
cached_stride,
bts_stride,
btb_stride,
block_size,
q_total_tokens,
Q_HEAD_NUM: tl.constexpr,
HEAD_DIM: tl.constexpr,
):
block_head_index = tl.program_id(0)
if block_head_index >= Q_HEAD_NUM:
return
block_token_index = tl.program_id(1)
dim_range0 = tl.arange(0, HEAD_DIM // 2)
dim_range1 = tl.arange(HEAD_DIM // 2, HEAD_DIM)
off_q0 = block_token_index * q_token_stride + block_head_index * q_head_stride + dim_range0 * head_dim_stride
off_q1 = block_token_index * q_token_stride + block_head_index * q_head_stride + dim_range1 * head_dim_stride
off_k0 = block_token_index * k_token_stride + block_head_index * k_head_stride + dim_range0 * head_dim_stride
off_k1 = block_token_index * k_token_stride + block_head_index * k_head_stride + dim_range1 * head_dim_stride
loaded_q0 = tl.load(
q + off_q0,
)
loaded_q1 = tl.load(
q + off_q1,
)
loaded_k0 = tl.load(
k + off_k0,
)
loaded_k1 = tl.load(
k + off_k1,
)
off_cos_sin = block_token_index * cos_token_stride + dim_range0 * cos_stride
loaded_cos = tl.load(cos + off_cos_sin, mask=(block_token_index < q_total_tokens), other=0.0)
loaded_sin = tl.load(sin + off_cos_sin, mask=(block_token_index < q_total_tokens), other=0.0)
out_q0 = loaded_q0 * loaded_cos - loaded_q1 * loaded_sin
out_q1 = loaded_q0 * loaded_sin + loaded_q1 * loaded_cos
out_k0 = loaded_k0 * loaded_cos - loaded_k1 * loaded_sin
out_k1 = loaded_k0 * loaded_sin + loaded_k1 * loaded_cos # total_tokens, head_num, head_dim
past_kv_seq_len = tl.load(context_lengths + block_token_index) - 1
last_block_idx = past_kv_seq_len // block_size
block_table_ptr = BLOCK_TABLES + block_token_index * bts_stride
block_ids = tl.load(block_table_ptr + last_block_idx * btb_stride, mask=(block_token_index < q_total_tokens))
offsets_in_last_block = (past_kv_seq_len % block_size) * cachebs_stride
kv_range0 = (
block_ids * cacheb_stride
+ block_head_index * cacheh_stride
+ offsets_in_last_block
+ dim_range0 * cached_stride
)
kv_range1 = (
block_ids * cacheb_stride
+ block_head_index * cacheh_stride
+ offsets_in_last_block
+ dim_range1 * cached_stride
)
tl.store(
kv_cache + kv_range0,
out_k0,
)
tl.store(
kv_cache + kv_range1,
out_k1,
)
# concat
tl.store(
q + off_q0,
out_q0,
)
tl.store(
q + off_q1,
out_q1,
)
@triton.jit
def decoding_fused_rotary_embedding_kernel(
q,
k,
v,
cos,
sin,
k_cache,
v_cache,
BLOCK_TABLES,
context_lengths,
x,
q_token_stride,
q_head_stride,
k_token_stride,
k_head_stride,
head_dim_stride,
cos_token_stride,
cos_stride,
kcb_stride,
kch_stride,
kcsplit_x_stride,
kcs_stride,
kcd_stride,
vcb_stride,
vch_stride,
vcs_stride,
vcd_stride,
bts_stride,
btb_stride,
block_size,
KV_GROUP_NUM: tl.constexpr,
HEAD_DIM: tl.constexpr,
):
cur_head_idx = tl.program_id(0)
cur_token_idx = tl.program_id(1)
dim_range = tl.arange(0, HEAD_DIM)
dim_range0 = tl.arange(0, HEAD_DIM // 2)
dim_range1 = tl.arange(HEAD_DIM // 2, HEAD_DIM)
off_q = cur_token_idx * q_token_stride + cur_head_idx * q_head_stride
off_q0 = off_q + dim_range0 * head_dim_stride
off_q1 = off_q + dim_range1 * head_dim_stride
loaded_q0 = tl.load(q + off_q0)
loaded_q1 = tl.load(q + off_q1)
off_cos_sin = cur_token_idx * cos_token_stride + dim_range0 * cos_stride
loaded_cos = tl.load(cos + off_cos_sin)
loaded_sin = tl.load(sin + off_cos_sin)
out_q0 = loaded_q0 * loaded_cos - loaded_q1 * loaded_sin
out_q1 = loaded_q0 * loaded_sin + loaded_q1 * loaded_cos
tl.store(q + off_q0, out_q0)
tl.store(q + off_q1, out_q1)
handle_kv = cur_head_idx % KV_GROUP_NUM == 0
if handle_kv:
cur_k_head_idx = cur_head_idx // KV_GROUP_NUM
off_kv = cur_token_idx * k_token_stride + cur_k_head_idx * k_head_stride
off_k0 = off_kv + dim_range0 * head_dim_stride
off_k1 = off_kv + dim_range1 * head_dim_stride
loaded_k0 = tl.load(k + off_k0)
loaded_k1 = tl.load(k + off_k1)
out_k0 = loaded_k0 * loaded_cos - loaded_k1 * loaded_sin
out_k1 = loaded_k0 * loaded_sin + loaded_k1 * loaded_cos
# NOTE The precondition here is that it's only for unpadded inputs during decoding stage,
# and so that we could directly use the token index as the sequence index
past_kv_seq_len = tl.load(context_lengths + cur_token_idx) - 1
last_block_idx = past_kv_seq_len // block_size
block_ids = tl.load(BLOCK_TABLES + cur_token_idx * bts_stride + last_block_idx * btb_stride)
offsets_in_last_block = past_kv_seq_len % block_size
offsets_cache_base = block_ids * kcb_stride + cur_k_head_idx * kch_stride
k_range0 = (
offsets_cache_base
+ offsets_in_last_block * kcs_stride
+ (dim_range0 // x) * kcsplit_x_stride
+ (dim_range0 % x) * kcd_stride
)
k_range1 = (
offsets_cache_base
+ offsets_in_last_block * kcs_stride
+ (dim_range1 // x) * kcsplit_x_stride
+ (dim_range1 % x) * kcd_stride
)
tl.store(k_cache + k_range0, out_k0)
tl.store(k_cache + k_range1, out_k1)
off_v = off_kv + dim_range * head_dim_stride
loaded_v = tl.load(v + off_v)
v_range = (
block_ids * vcb_stride
+ cur_k_head_idx * vch_stride
+ offsets_in_last_block * vcs_stride
+ dim_range * vcd_stride
)
tl.store(v_cache + v_range, loaded_v)
def rotary_embedding(
q: torch.Tensor,
k: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
k_cache: Optional[torch.Tensor] = None,
block_tables: Optional[torch.Tensor] = None,
kv_lengths: Optional[torch.Tensor] = None,
):
"""
Args:
q: query tensor, [total_tokens, head_num, head_dim]
k: key tensor, [total_tokens, kv_head_num, head_dim]
cos: cosine for rotary embedding, [max_position_len, head_dim]
sin: sine for rotary embedding, [max_position_len, head_dim]
k_cache (torch.Tensor): Blocked key cache. [num_blocks, num_kv_heads, block_size, head_dim]
kv_lengths, Past key/value sequence lengths plus current sequence length for each sequence. [bsz]
block_tables: Block tables for each sequence. [bsz, max_blocks_per_sequence]
"""
q_total_tokens, q_head_num, head_dim = q.shape
assert q.size(0) == k.size(0)
BLOCK_TOKENS = 4
if head_dim >= 512:
num_warps = 16
elif head_dim >= 256:
num_warps = 8
else:
num_warps = 4
k_head_num = k.size(1)
q_token_stride, q_head_stride, head_dim_stride = q.stride()
k_token_stride, k_head_stride, _ = k.stride()
cos_token_stride, cos_stride = cos.stride()
assert q_head_num % k_head_num == 0
kv_group_num = q_head_num // k_head_num
if k_cache == None:
grid = lambda META: (
q_head_num,
triton.cdiv(q_total_tokens, META["BLOCK_TOKENS"]),
)
rotary_embedding_kernel[grid](
q,
k,
cos,
sin,
q_token_stride,
q_head_stride,
k_token_stride,
k_head_stride,
head_dim_stride,
cos_token_stride,
cos_stride,
q_total_tokens,
Q_HEAD_NUM=q_head_num,
KV_GROUP_NUM=kv_group_num,
HEAD_DIM=head_dim,
BLOCK_TOKENS=BLOCK_TOKENS,
num_warps=num_warps,
)
else:
warnings.warn("Fused rotary embedding Triton kernel will be deprecated as the new kcache layout is supported")
grid = (triton.next_power_of_2(q_head_num), q_total_tokens)
fused_rotary_embedding_kernel_v2[grid](
q,
k,
cos,
sin,
k_cache,
block_tables,
kv_lengths,
q_token_stride,
q_head_stride,
k_token_stride,
k_head_stride,
head_dim_stride,
cos_token_stride,
cos_stride,
k_cache.stride(0),
k_cache.stride(1),
k_cache.stride(2),
k_cache.stride(3),
block_tables.stride(0),
block_tables.stride(1),
k_cache.size(-2),
q_total_tokens,
Q_HEAD_NUM=q_head_num,
HEAD_DIM=head_dim,
num_warps=num_warps,
)
return
def decoding_fused_rotary_embedding(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
k_cache: Optional[torch.Tensor] = None,
v_cache: Optional[torch.Tensor] = None,
block_tables: Optional[torch.Tensor] = None,
kv_lengths: Optional[torch.Tensor] = None,
use_new_kcache_layout: bool = False,
):
"""
Args:
q: query tensor, [total_tokens, head_num, head_dim]
k: key tensor, [total_tokens, kv_head_num, head_dim]
v: value tensor, [total tokens, kv_head_num, head_dim]
cos: cosine for rotary embedding, [max_position_len, head_dim]
sin: sine for rotary embedding, [max_position_len, head_dim]
k_cache (torch.Tensor): Blocked key cache. [num_blocks, kv_head_num, block_size, head_dim]
v_cache (torch.Tensor): Blocked value cache. [num_blocks, kv_head_num, block_size, head_dim]
kv_lengths, Past key/value sequence lengths plus current sequence length for each sequence. [bsz]
block_tables: Block tables for each sequence. [bsz, max_blocks_per_sequence]
"""
q_total_tokens, q_head_num, head_dim = q.shape
assert q.size(0) == k.size(0) == v.size(0)
if head_dim >= 512:
num_warps = 16
elif head_dim >= 256:
num_warps = 8
else:
num_warps = 4
k_head_num = k.size(1)
kv_group_num = q_head_num // k_head_num
# For KCache and VCache with the same layout
x = head_dim
kcsplit_x_stride, kcs_stride, kcd_stride = 0, k_cache.stride(2), k_cache.stride(3)
# For KCache layout [num_blocks, num_kv_heads, head_dim//x, block_size, x]
if use_new_kcache_layout:
assert (
k_cache.dim() == 5
and k_cache.shape[1] == v_cache.shape[1]
and k_cache.shape[2] * k_cache.shape[4] == v_cache.shape[3]
), f"Invalid KCache shape {k_cache.shape} and VCache shape {v_cache.shape}"
x = k_cache.size(-1)
kcsplit_x_stride, kcs_stride, kcd_stride = k_cache.stride()[-3:]
grid = (q_head_num, q_total_tokens)
decoding_fused_rotary_embedding_kernel[grid](
q,
k,
v,
cos,
sin,
k_cache,
v_cache,
block_tables,
kv_lengths,
x,
q.stride(0),
q.stride(1),
k.stride(0),
k.stride(1),
q.stride(2),
cos.stride(0),
cos.stride(1),
k_cache.stride(0),
k_cache.stride(1),
kcsplit_x_stride,
kcs_stride,
kcd_stride,
v_cache.stride(0),
v_cache.stride(1),
v_cache.stride(2),
v_cache.stride(3),
block_tables.stride(0),
block_tables.stride(1),
k_cache.size(-2),
KV_GROUP_NUM=kv_group_num,
HEAD_DIM=head_dim,
num_warps=num_warps,
)
return