Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

127 lines
3.7 KiB

import warnings
from typing import List
from .extensions import (
CpuAdamArmExtension,
CpuAdamX86Extension,
FlashAttentionDaoCudaExtension,
FlashAttentionNpuExtension,
FlashAttentionSdpaCudaExtension,
FusedOptimizerCudaExtension,
InferenceOpsCudaExtension,
LayerNormCudaExtension,
MoeCudaExtension,
ScaledMaskedSoftmaxCudaExtension,
ScaledUpperTriangleMaskedSoftmaxCudaExtension,
)
from .extensions.base_extension import _Extension
__all__ = [
"KernelLoader",
"CPUAdamLoader",
"LayerNormLoader",
"MoeLoader",
"FusedOptimizerLoader",
"InferenceOpsLoader",
"ScaledMaskedSoftmaxLoader",
"ScaledUpperTriangleMaskedSoftmaxLoader",
]
class KernelLoader:
"""
An abstract class which offers encapsulation to the kernel loading process.
Usage:
kernel_loader = KernelLoader()
kernel = kernel_loader.load()
"""
REGISTRY: List[_Extension] = []
@classmethod
def register_extension(cls, extension: _Extension):
"""
This classmethod is an extension point which allows users to register their customized
kernel implementations to the loader.
Args:
extension (_Extension): the extension to be registered.
"""
cls.REGISTRY.append(extension)
def load(self, ext_name: str = None):
"""
Load the kernel according to the current machine.
Args:
ext_name (str): the name of the extension to be loaded. If not specified, the loader
will try to look for an kernel available on the current machine.
"""
exts = [ext_cls() for ext_cls in self.__class__.REGISTRY]
# look for exts which can be built/loaded on the current machine
if ext_name:
usable_exts = list(filter(lambda ext: ext.name == ext_name, exts))
else:
usable_exts = []
for ext in exts:
if ext.is_available():
# make sure the machine is compatible during kernel loading
ext.assert_compatible()
usable_exts.append(ext)
assert len(usable_exts) != 0, f"No usable kernel found for {self.__class__.__name__} on the current machine."
if len(usable_exts) > 1:
# if more than one usable kernel is found, we will try to load the kernel with the highest priority
usable_exts = sorted(usable_exts, key=lambda ext: ext.priority, reverse=True)
warnings.warn(
f"More than one kernel is available, loading the kernel with the highest priority - {usable_exts[0].__class__.__name__}"
)
return usable_exts[0].load()
class CPUAdamLoader(KernelLoader):
REGISTRY = [CpuAdamX86Extension, CpuAdamArmExtension]
class LayerNormLoader(KernelLoader):
REGISTRY = [LayerNormCudaExtension]
class MoeLoader(KernelLoader):
REGISTRY = [MoeCudaExtension]
class FusedOptimizerLoader(KernelLoader):
REGISTRY = [FusedOptimizerCudaExtension]
class InferenceOpsLoader(KernelLoader):
REGISTRY = [InferenceOpsCudaExtension]
class ScaledMaskedSoftmaxLoader(KernelLoader):
REGISTRY = [ScaledMaskedSoftmaxCudaExtension]
class ScaledUpperTriangleMaskedSoftmaxLoader(KernelLoader):
REGISTRY = [ScaledUpperTriangleMaskedSoftmaxCudaExtension]
class FlashAttentionLoader(KernelLoader):
REGISTRY = [
FlashAttentionNpuExtension,
FlashAttentionDaoCudaExtension,
FlashAttentionSdpaCudaExtension,
]
class FlashAttentionWithCustomMaskLoader(KernelLoader):
REGISTRY = [FlashAttentionNpuExtension, FlashAttentionSdpaCudaExtension]
class FlashAttentionForFloatAndCustomMaskLoader(KernelLoader):
REGISTRY = [FlashAttentionSdpaCudaExtension]