mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1082 lines
44 KiB
1082 lines
44 KiB
from typing import Any, Dict, Iterable, List, Tuple |
|
|
|
import torch |
|
|
|
import colossalai |
|
|
|
try: |
|
from torch.fx.graph import ( |
|
CodeGen, |
|
PythonCode, |
|
_custom_builtins, |
|
_CustomBuiltin, |
|
_format_target, |
|
_is_from_torch, |
|
_Namespace, |
|
_origin_type_map, |
|
inplace_methods, |
|
magic_methods, |
|
) |
|
from torch.fx.node import Argument, Node, _get_qualified_name, _type_repr, map_arg |
|
|
|
CODEGEN_AVAILABLE = True |
|
except: |
|
from torch.fx.graph import ( |
|
PythonCode, |
|
_custom_builtins, |
|
_CustomBuiltin, |
|
_format_args, |
|
_format_target, |
|
_is_from_torch, |
|
_Namespace, |
|
_origin_type_map, |
|
magic_methods, |
|
) |
|
from torch.fx.node import Argument, Node, _get_qualified_name, _type_repr, map_arg |
|
|
|
CODEGEN_AVAILABLE = False |
|
|
|
if CODEGEN_AVAILABLE: |
|
__all__ = ["ActivationCheckpointCodeGen"] |
|
else: |
|
__all__ = ["python_code_with_activation_checkpoint"] |
|
|
|
|
|
def _gen_saved_tensors_hooks(): |
|
""" |
|
Generate saved tensors hooks |
|
""" |
|
|
|
pack_hook = """def pack_hook_input(self, x): |
|
if getattr(x, "offload", False): |
|
return (x.device, x.cpu()) |
|
else: |
|
return x |
|
|
|
def pack_hook_no_input(self, x): |
|
if getattr(x, "offload", True): |
|
return (x.device, x.cpu()) |
|
else: |
|
return x |
|
""" |
|
|
|
unpack_hook = """def unpack_hook(self, packed): |
|
if isinstance(packed, tuple): |
|
device, tensor = packed |
|
return tensor.to(device) |
|
else: |
|
return packed |
|
""" |
|
|
|
return pack_hook, unpack_hook |
|
|
|
|
|
def _gen_save_tensors_hooks_context(offload_input=True) -> str: |
|
"""Generate customized saved_tensors_hooks |
|
Args: |
|
offload_input (bool, optional): whether we need offload input, if offload_input=False, |
|
we will use self.pack_hook_no_input instead. Defaults to True. |
|
Returns: |
|
str: generated context |
|
""" |
|
|
|
if offload_input: |
|
context = "with torch.autograd.graph.saved_tensors_hooks(self.pack_hook_input, self.unpack_hook):\n" |
|
else: |
|
context = "with torch.autograd.graph.saved_tensors_hooks(self.pack_hook_no_input, self.unpack_hook):\n" |
|
return context |
|
|
|
|
|
def _gen_save_on_cpu_context(): |
|
""" |
|
Generate save on cpu context |
|
""" |
|
|
|
context = "with torch.autograd.graph.save_on_cpu(pin_memory=True):\n" |
|
return context |
|
|
|
|
|
def _find_input_and_output_nodes(nodes: List[Node]): |
|
""" |
|
Find the input and output node names which are not found in the given list of nodes. |
|
""" |
|
input_nodes = [] |
|
output_nodes = [] |
|
|
|
# if a node has an input node which is not in the node list |
|
# we treat that input node as the input of the checkpoint function |
|
for node in nodes: |
|
for input_node in node._input_nodes.keys(): |
|
node_repr = repr(input_node) |
|
if input_node not in nodes and node_repr not in input_nodes: |
|
input_nodes.append(node_repr) |
|
|
|
# if a node has a user node which is not in the node list |
|
# we treat that user node as the node receiving the current node output |
|
for node in nodes: |
|
for output_node in node.users.keys(): |
|
node_repr = repr(node) |
|
if output_node not in nodes and node_repr not in output_nodes: |
|
output_nodes.append(node_repr) |
|
|
|
return input_nodes, output_nodes |
|
|
|
|
|
def _find_ckpt_regions(nodes: List[Node]): |
|
""" |
|
Find the checkpoint regions given a list of consecutive nodes. The outputs will be list |
|
of tuples, each tuple is in the form of (start_index, end_index). |
|
""" |
|
ckpt_regions = [] |
|
start = -1 |
|
end = -1 |
|
current_region = None |
|
|
|
for idx, node in enumerate(nodes): |
|
if "activation_checkpoint" in node.meta: |
|
act_ckpt_label = node.meta["activation_checkpoint"] |
|
|
|
# this activation checkpoint label is not set yet |
|
# meaning this is the first node of the activation ckpt region |
|
if current_region is None: |
|
current_region = act_ckpt_label |
|
start = idx |
|
|
|
# if activation checkpoint has changed |
|
# we restart the tracking |
|
# e.g. node ckpt states = [ckpt1, ckpt2, ckpt2, ckpt2] |
|
if act_ckpt_label != current_region: |
|
assert start != -1 |
|
ckpt_regions.append((start, idx - 1)) |
|
current_region = act_ckpt_label |
|
start = idx |
|
end = -1 |
|
elif current_region is not None and not "activation_checkpoint" in node.meta: |
|
# used to check the case below |
|
# node ckpt states = [ckpt, ckpt, non-ckpt] |
|
end = idx - 1 |
|
assert start != -1 and end != -1 |
|
ckpt_regions.append((start, end)) |
|
start = end = -1 |
|
current_region = None |
|
else: |
|
pass |
|
return ckpt_regions |
|
|
|
|
|
def _find_offload_regions(nodes: List[Node]): |
|
"""This function is to find the offload regions |
|
In pofo algorithm, during annotation, we will annotate the offload region with the |
|
list in the form of [idx, offload_input, offload_bar]. idx indicates the offload |
|
region's index, offload_input is a bool type indicates whether we need to offload |
|
the input, offload_bar is a bool type indicates whether we need to offload all the |
|
intermediate x_bars of this region. |
|
""" |
|
offload_regions = [] |
|
offload_labels = [] |
|
start = -1 |
|
end = -1 |
|
current_region = None |
|
|
|
for idx, node in enumerate(nodes): |
|
if "activation_offload" in node.meta and isinstance(node.meta["activation_offload"], Iterable): |
|
act_offload_label = node.meta["activation_offload"] |
|
|
|
if current_region == None: |
|
current_region = act_offload_label |
|
start = idx |
|
offload_labels.append(act_offload_label) |
|
|
|
if act_offload_label != current_region: |
|
assert start != -1 |
|
offload_regions.append((start, idx - 1)) |
|
offload_labels.append(act_offload_label) |
|
current_region = act_offload_label |
|
start = idx |
|
end = -1 |
|
|
|
else: |
|
if current_region is not None: |
|
end = idx - 1 |
|
assert start != -1 and end != -1 |
|
offload_regions.append((start, end)) |
|
start = end = -1 |
|
current_region = None |
|
|
|
else: |
|
pass |
|
|
|
return offload_regions, offload_labels |
|
|
|
|
|
def _gen_ckpt_fn_def(label, free_vars: List[str]) -> str: |
|
""" |
|
Generate the checkpoint function definition |
|
""" |
|
return f"def checkpoint_{label}({', '.join(['self'] + free_vars)}):" |
|
|
|
|
|
def _gen_ckpt_output(output_vars: List[str]) -> str: |
|
""" |
|
Generate the return statement for checkpoint region |
|
""" |
|
return f"return {', '.join(output_vars)}" |
|
|
|
|
|
def _gen_ckpt_usage(label, activation_offload, input_vars, output_vars, use_reentrant=True): |
|
""" |
|
Generate the checkpoint function call code text |
|
""" |
|
outputs = ", ".join(output_vars) |
|
inputs = ", ".join(input_vars) |
|
return f"{outputs} = colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_{label}, {activation_offload}, {inputs}, use_reentrant={use_reentrant})" |
|
|
|
|
|
def _end_of_ckpt(node: Node, check_idx: int) -> bool: |
|
"""Check if the node could end the ckpt region |
|
Args: |
|
node (Node): torch.fx.Node |
|
check_idx (int): the index of checkpoint level for |
|
nested checkpoint |
|
Returns: |
|
bool |
|
""" |
|
if "activation_checkpoint" in node.meta: |
|
if isinstance(node.meta["activation_checkpoint"], list): |
|
return node.meta["activation_checkpoint"][check_idx] == None |
|
else: |
|
return False |
|
else: |
|
return True |
|
|
|
|
|
def _find_nested_ckpt_regions(nodes, check_idx=0): |
|
""" |
|
Find the nested checkpoint regions given a list of consecutive nodes. The outputs |
|
will be list of tuples, each tuple is in the form of (start_index, end_index). |
|
""" |
|
ckpt_regions = [] |
|
start = -1 |
|
end = -1 |
|
current_region = None |
|
|
|
for idx, node in enumerate(nodes): |
|
if "activation_checkpoint" in node.meta: |
|
if isinstance(node.meta["activation_checkpoint"], int): |
|
act_ckpt_label = node.meta["activation_checkpoint"] |
|
else: |
|
act_ckpt_label = node.meta["activation_checkpoint"][check_idx] |
|
|
|
# this activation checkpoint label is not set yet |
|
# meaning this is the first node of the activation ckpt region |
|
if current_region is None: |
|
current_region = act_ckpt_label |
|
start = idx |
|
|
|
# if activation checkpoint has changed |
|
# we restart the tracking |
|
# e.g. node ckpt states = [ckpt1, ckpt2, ckpt2, ckpt2] |
|
if act_ckpt_label != current_region: |
|
assert start != -1 |
|
ckpt_regions.append((start, idx - 1)) |
|
current_region = act_ckpt_label |
|
start = idx |
|
end = -1 |
|
elif current_region is not None and _end_of_ckpt(node, check_idx): |
|
# used to check the case below |
|
# node ckpt states = [ckpt, ckpt, non-ckpt] |
|
end = idx - 1 |
|
assert start != -1 and end != -1 |
|
ckpt_regions.append((start, end)) |
|
start = end = -1 |
|
current_region = None |
|
else: |
|
pass |
|
|
|
if current_region is not None: |
|
end = len(nodes) - 1 |
|
ckpt_regions.append((start, end)) |
|
return ckpt_regions |
|
|
|
|
|
def emit_ckpt_func( |
|
body, ckpt_func, node_list: List[Node], emit_node_func, delete_unused_value_func, level=0, in_ckpt=False |
|
): |
|
"""Emit ckpt function in nested way |
|
Args: |
|
body: forward code, in recursive calls, this part will be checkpoint |
|
functions code |
|
ckpt_func: checkpoint functions code, in recursive calls, this part |
|
will be a buffer |
|
node_list (List[Node]): list of torch.fx.Node |
|
emit_node_func: function to emit a node |
|
delete_unused_value_func: function to delete unused value |
|
level (int, optional): checkpoint level. Defaults to 0. |
|
in_ckpt (bool, optional): indicates wether the func is in recursive |
|
call. Defaults to False. |
|
""" |
|
inputs, outputs = _find_input_and_output_nodes(node_list) |
|
|
|
# if the current checkpoint function use int as label, using old generation method |
|
if isinstance(node_list[0].meta["activation_checkpoint"], int): |
|
label = node_list[0].meta["activation_checkpoint"] |
|
ckpt_fn_def = _gen_ckpt_fn_def(label, inputs) |
|
ckpt_func.append(f"{ckpt_fn_def}\n") |
|
for node in node_list: |
|
emit_node_func(node, ckpt_func) |
|
ckpt_func[-1] = " " + ckpt_func[-1] |
|
delete_unused_value_func(node, ckpt_func) |
|
|
|
ckpt_func.append(" " + _gen_ckpt_output(outputs) + "\n\n") |
|
activation_offload = node_list[0].meta.get("activation_offload", False) |
|
usage = _gen_ckpt_usage(label, activation_offload, inputs, outputs, False) |
|
usage += "\n" |
|
body.append(usage) |
|
|
|
# use nested ckpt function codegen |
|
else: |
|
# label given by each layer, e.g. if you are currently at level [0, 1, 1] |
|
# the label will be '0_1_1' |
|
label = "_".join([str(idx) for idx in node_list[0].meta["activation_checkpoint"][: level + 1]]) |
|
ckpt_fn_def = _gen_ckpt_fn_def(label, inputs) |
|
ckpt_func.append(f"{ckpt_fn_def}\n") |
|
|
|
# if there is more level to fetch |
|
if level + 1 < len(node_list[0].meta["activation_checkpoint"]): |
|
ckpt_regions = _find_nested_ckpt_regions(node_list, level + 1) |
|
start_idx = [item[0] for item in ckpt_regions] |
|
end_idx = [item[1] for item in ckpt_regions] |
|
|
|
# use ckpt_func_buffer to store nested checkpoint functions |
|
ckpt_func_buffer = [] |
|
node_idx = 0 |
|
while 1: |
|
if node_idx >= len(node_list): |
|
break |
|
|
|
if node_idx in start_idx: |
|
ckpt_node_list = node_list[node_idx : end_idx[start_idx.index(node_idx)] + 1] |
|
emit_ckpt_func( |
|
ckpt_func, |
|
ckpt_func_buffer, |
|
ckpt_node_list, |
|
emit_node_func, |
|
delete_unused_value_func, |
|
level + 1, |
|
True, |
|
) |
|
node_idx += len(ckpt_node_list) |
|
|
|
else: |
|
node = node_list[node_idx] |
|
emit_node_func(node, ckpt_func) |
|
ckpt_func[-1] = " " + ckpt_func[-1] |
|
delete_unused_value_func(node, ckpt_func) |
|
node_idx += 1 |
|
|
|
ckpt_func.append(" " + _gen_ckpt_output(outputs) + "\n\n") |
|
ckpt_func += ckpt_func_buffer |
|
activation_offload = node_list[0].meta.get("activation_offload", False) |
|
usage = _gen_ckpt_usage(label, activation_offload, inputs, outputs, False) + "\n" |
|
if in_ckpt: |
|
usage = " " + usage |
|
body.append(usage) |
|
|
|
# last level |
|
else: |
|
for node in node_list: |
|
emit_node_func(node, ckpt_func) |
|
ckpt_func[-1] = " " + ckpt_func[-1] |
|
delete_unused_value_func(node, ckpt_func) |
|
|
|
ckpt_func.append(" " + _gen_ckpt_output(outputs) + "\n\n") |
|
activation_offload = node_list[0].meta.get("activation_offload", False) |
|
usage = _gen_ckpt_usage(label, activation_offload, inputs, outputs, False) + "\n" |
|
if in_ckpt: |
|
usage = " " + usage |
|
body.append(usage) |
|
|
|
|
|
def emit_code_with_nested_activation_checkpoint(body, ckpt_func, nodes, emit_node_func, delete_unused_value_func): |
|
"""Emit code with nested activation checkpoint |
|
When we detect some of the node.activation_checkpoint is a List, we will use |
|
this function to emit the activation checkpoint codes. |
|
Args: |
|
body: forward code |
|
ckpt_func: checkpoint functions code |
|
nodes: graph.nodes |
|
emit_node_func: function to emit node |
|
delete_unused_value_func: function to remove the unused value |
|
""" |
|
ckpt_regions = _find_nested_ckpt_regions(nodes, 0) |
|
start_idx = [item[0] for item in ckpt_regions] |
|
end_idx = [item[1] for item in ckpt_regions] |
|
|
|
# find the offload regions |
|
offload_regions, offload_labels = _find_offload_regions(nodes) |
|
offload_starts = [item[0] for item in offload_regions] |
|
offload_ends = [item[1] for item in offload_regions] |
|
offload_inputs = [] |
|
offload_outputs = [] |
|
within_offload_region = False |
|
|
|
node_list = list(nodes) |
|
|
|
# find the input and output var names for each offload region |
|
for idx, (start, end) in enumerate(offload_regions): |
|
offload_node_list = node_list[start : end + 1] |
|
inputs, outputs = _find_input_and_output_nodes(offload_node_list) |
|
offload_inputs.append(inputs) |
|
offload_outputs.append(outputs) |
|
|
|
# this flag is to prevent repeated insert of save tensors |
|
# hooks definition in ckpt_func |
|
is_hook_inserted = False |
|
node_idx = 0 |
|
while 1: |
|
# break if we finish the processing all the nodes |
|
if node_idx >= len(node_list): |
|
break |
|
|
|
# process ckpt_regions |
|
if node_idx in start_idx: |
|
ckpt_node_list = node_list[node_idx : end_idx[start_idx.index(node_idx)] + 1] |
|
emit_ckpt_func(body, ckpt_func, ckpt_node_list, emit_node_func, delete_unused_value_func) |
|
node_idx += len(ckpt_node_list) |
|
|
|
# process node in forward function |
|
else: |
|
node = node_list[node_idx] |
|
|
|
if node_idx in offload_starts: |
|
offload_label = offload_labels[offload_starts.index(node_idx)] |
|
_, offload_input, offload_bar = offload_label |
|
within_offload_region = True |
|
|
|
# insert hook functions if needed |
|
if not is_hook_inserted: |
|
pack_hook, unpack_hook = _gen_saved_tensors_hooks() |
|
ckpt_func.insert(0, "\n".join([pack_hook, unpack_hook]) + "\n") |
|
is_hook_inserted = True |
|
|
|
if offload_input and offload_bar: |
|
body.append(_gen_save_on_cpu_context()) |
|
|
|
elif offload_input: |
|
for par in offload_inputs[offload_label[0]]: |
|
body.append(f"setattr({par}, 'offload', True)\n") |
|
body.append(_gen_save_tensors_hooks_context(offload_input=True)) |
|
|
|
else: |
|
for par in offload_inputs[offload_label[0]]: |
|
body.append(f"setattr({par}, 'offload', False)\n") |
|
body.append(_gen_save_tensors_hooks_context(offload_input=False)) |
|
|
|
if within_offload_region: |
|
emit_node_func(node, body) |
|
body[-1] = " " + body[-1] |
|
delete_unused_value_func(node, body) |
|
|
|
else: |
|
emit_node_func(node, body) |
|
delete_unused_value_func(node, body) |
|
|
|
if node_idx in offload_ends: |
|
within_offload_region = False |
|
|
|
node_idx += 1 |
|
|
|
|
|
def emit_code_with_activation_checkpoint(body, ckpt_func, nodes, emit_node_func, delete_unused_value_func): |
|
# find the activation checkpoint regions |
|
ckpt_regions = _find_ckpt_regions(nodes) |
|
start_idx = [item[0] for item in ckpt_regions] |
|
end_idx = [item[1] for item in ckpt_regions] |
|
input_vars = [] |
|
output_vars = [] |
|
within_ckpt_region = False |
|
|
|
# find the offload regions |
|
offload_regions, offload_labels = _find_offload_regions(nodes) |
|
offload_starts = [item[0] for item in offload_regions] |
|
offload_ends = [item[1] for item in offload_regions] |
|
offload_inputs = [] |
|
offload_outputs = [] |
|
within_offload_region = False |
|
|
|
node_list = list(nodes) |
|
|
|
# use this variable to avoid inserting hook functions |
|
# to ckpt_func repeatedly |
|
is_hook_inserted = False |
|
|
|
# find the input and output var names for each region |
|
for idx, (start, end) in enumerate(ckpt_regions): |
|
ckpt_node_list = node_list[start : end + 1] |
|
inputs, outputs = _find_input_and_output_nodes(ckpt_node_list) |
|
input_vars.append(inputs) |
|
output_vars.append(outputs) |
|
|
|
# find the input and output var names for each offload region |
|
for idx, (start, end) in enumerate(offload_regions): |
|
offload_node_list = node_list[start : end + 1] |
|
inputs, outputs = _find_input_and_output_nodes(offload_node_list) |
|
offload_inputs.append(inputs) |
|
offload_outputs.append(outputs) |
|
|
|
# append code text to body |
|
for idx, node in enumerate(node_list): |
|
# if this is the first node of the ckpt region |
|
# append the ckpt function definition |
|
if idx in start_idx: |
|
label = start_idx.index(idx) |
|
ckpt_fn_def = _gen_ckpt_fn_def(label, input_vars[label]) |
|
ckpt_func.append(f"{ckpt_fn_def}\n") |
|
within_ckpt_region = True |
|
|
|
if idx in offload_starts: |
|
offload_label = offload_labels[offload_starts.index(idx)] |
|
_, offload_input, offload_bar = offload_label |
|
within_offload_region = True |
|
|
|
# insert hook functions if needed |
|
if not is_hook_inserted: |
|
pack_hook, unpack_hook = _gen_saved_tensors_hooks() |
|
ckpt_func.insert(0, "\n".join([pack_hook, unpack_hook]) + "\n") |
|
is_hook_inserted = True |
|
|
|
if offload_input and offload_bar: |
|
body.append(_gen_save_on_cpu_context()) |
|
|
|
elif offload_input: |
|
for par in offload_inputs[offload_label[0]]: |
|
body.append(f"setattr({par}, 'offload', True)\n") |
|
body.append(_gen_save_tensors_hooks_context(offload_input=True)) |
|
|
|
else: |
|
for par in offload_inputs[offload_label[0]]: |
|
body.append(f"setattr({par}, 'offload', False)\n") |
|
body.append(_gen_save_tensors_hooks_context(offload_input=False)) |
|
|
|
# NOTE: emit_node does not emit a string with newline. It depends |
|
# on delete_unused_values to append one |
|
# NOTE: currently we separate body and ckpt_func definition |
|
if within_ckpt_region: |
|
emit_node_func(node, ckpt_func) |
|
ckpt_func[-1] = " " + ckpt_func[-1] |
|
delete_unused_value_func(node, ckpt_func) |
|
|
|
elif within_offload_region: |
|
emit_node_func(node, body) |
|
body[-1] = " " + body[-1] |
|
delete_unused_value_func(node, body) |
|
|
|
else: |
|
emit_node_func(node, body) |
|
delete_unused_value_func(node, body) |
|
|
|
if idx in end_idx: |
|
# if this is the last node of the ckpt region |
|
# generate return statement |
|
label = end_idx.index(idx) |
|
return_statement = _gen_ckpt_output(output_vars[label]) |
|
return_statement = f" {return_statement}\n\n" |
|
ckpt_func.append(return_statement) |
|
|
|
# we need to check if the checkpoint need to offload the input |
|
start_node_idx = start_idx[label] |
|
if "activation_offload" in node_list[start_node_idx].meta: |
|
activation_offload = node_list[start_node_idx].meta["activation_offload"] |
|
else: |
|
activation_offload = False |
|
|
|
# we need to check if the checkpoint need use_reentrant=False |
|
use_reentrant = True |
|
non_leaf_input = 0 |
|
for var in input_vars[label]: |
|
input_node = next(item for item in node_list if item.name == var) |
|
if input_node.op != "placeholder": |
|
non_leaf_input = 1 |
|
for user in input_node.users: |
|
if "activation_checkpoint" in user.meta: |
|
if user.meta["activation_checkpoint"] == label: |
|
if user.op == "call_module": |
|
if hasattr(user.graph.owning_module.get_submodule(user.target), "inplace"): |
|
use_reentrant = not user.graph.owning_module.get_submodule(user.target).inplace |
|
|
|
elif user.op == "call_function": |
|
if "inplace" in user.kwargs: |
|
use_reentrant = not user.kwargs["inplace"] |
|
|
|
# if all the inputs are leaf nodes, we need to set use_reentrant = False |
|
if not non_leaf_input: |
|
use_reentrant = False |
|
|
|
# generate checkpoint function call in a new line |
|
usage = _gen_ckpt_usage(label, activation_offload, input_vars[label], output_vars[label], use_reentrant) |
|
usage += "\n" |
|
body.append(usage) |
|
within_ckpt_region = False |
|
|
|
if idx in offload_ends: |
|
within_offload_region = False |
|
|
|
|
|
if CODEGEN_AVAILABLE: |
|
|
|
class ActivationCheckpointCodeGen(CodeGen): |
|
def _gen_python_code(self, nodes, root_module: str, namespace: _Namespace, verbose=None) -> PythonCode: |
|
free_vars: List[str] = [] |
|
body: List[str] = [] |
|
globals_: Dict[str, Any] = {} |
|
wrapped_fns: Dict[str, None] = {} |
|
|
|
# Wrap string in list to pass by reference |
|
maybe_return_annotation: List[str] = [""] |
|
|
|
def add_global(name_hint: str, obj: Any): |
|
"""Add an obj to be tracked as a global. |
|
We call this for names that reference objects external to the |
|
Graph, like functions or types. |
|
Returns: the global name that should be used to reference 'obj' in generated source. |
|
""" |
|
if _is_from_torch(obj) and obj != torch.device: # to support registering torch.device |
|
# HACK: workaround for how torch custom ops are registered. We |
|
# can't import them like normal modules so they must retain their |
|
# fully qualified name. |
|
return _get_qualified_name(obj) |
|
|
|
# normalize the name hint to get a proper identifier |
|
global_name = namespace.create_name(name_hint, obj) |
|
|
|
if global_name in globals_: |
|
assert globals_[global_name] is obj |
|
return global_name |
|
globals_[global_name] = obj |
|
return global_name |
|
|
|
# set _custom_builtins here so that we needn't import colossalai in forward |
|
_custom_builtins["colossalai"] = _CustomBuiltin("import colossalai", colossalai) |
|
|
|
# Pre-fill the globals table with registered builtins. |
|
for name, (_, obj) in _custom_builtins.items(): |
|
add_global(name, obj) |
|
|
|
def type_repr(o: Any): |
|
if o == (): |
|
# Empty tuple is used for empty tuple type annotation Tuple[()] |
|
return "()" |
|
|
|
typename = _type_repr(o) |
|
|
|
if hasattr(o, "__origin__"): |
|
# This is a generic type, e.g. typing.List[torch.Tensor] |
|
origin_type = _origin_type_map.get(o.__origin__, o.__origin__) |
|
origin_typename = add_global(_type_repr(origin_type), origin_type) |
|
|
|
if hasattr(o, "__args__"): |
|
# Assign global names for each of the inner type variables. |
|
args = [type_repr(arg) for arg in o.__args__] |
|
|
|
if len(args) == 0: |
|
# Bare type, such as `typing.Tuple` with no subscript |
|
# This code-path used in Python < 3.9 |
|
return origin_typename |
|
|
|
return f'{origin_typename}[{",".join(args)}]' |
|
else: |
|
# Bare type, such as `typing.Tuple` with no subscript |
|
# This code-path used in Python 3.9+ |
|
return origin_typename |
|
|
|
# Common case: this is a regular module name like 'foo.bar.baz' |
|
return add_global(typename, o) |
|
|
|
def _format_args(args: Tuple[Argument, ...], kwargs: Dict[str, Argument]) -> str: |
|
def _get_repr(arg): |
|
# Handle NamedTuples (if it has `_fields`) via add_global. |
|
if isinstance(arg, tuple) and hasattr(arg, "_fields"): |
|
qualified_name = _get_qualified_name(type(arg)) |
|
global_name = add_global(qualified_name, type(arg)) |
|
return f"{global_name}{repr(tuple(arg))}" |
|
return repr(arg) |
|
|
|
args_s = ", ".join(_get_repr(a) for a in args) |
|
kwargs_s = ", ".join(f"{k} = {_get_repr(v)}" for k, v in kwargs.items()) |
|
if args_s and kwargs_s: |
|
return f"{args_s}, {kwargs_s}" |
|
return args_s or kwargs_s |
|
|
|
# Run through reverse nodes and record the first instance of a use |
|
# of a given node. This represents the *last* use of the node in the |
|
# execution order of the program, which we will use to free unused |
|
# values |
|
node_to_last_use: Dict[Node, Node] = {} |
|
user_to_last_uses: Dict[Node, List[Node]] = {} |
|
|
|
def register_last_uses(n: Node, user: Node): |
|
if n not in node_to_last_use: |
|
node_to_last_use[n] = user |
|
user_to_last_uses.setdefault(user, []).append(n) |
|
|
|
for node in reversed(nodes): |
|
map_arg(node.args, lambda n: register_last_uses(n, node)) |
|
map_arg(node.kwargs, lambda n: register_last_uses(n, node)) |
|
|
|
# NOTE: we add a variable to distinguish body and ckpt_func |
|
def delete_unused_values(user: Node, body): |
|
""" |
|
Delete values after their last use. This ensures that values that are |
|
not used in the remainder of the code are freed and the memory usage |
|
of the code is optimal. |
|
""" |
|
if user.op == "placeholder": |
|
return |
|
if user.op == "output": |
|
body.append("\n") |
|
return |
|
nodes_to_delete = user_to_last_uses.get(user, []) |
|
if len(nodes_to_delete): |
|
to_delete_str = " = ".join([repr(n) for n in nodes_to_delete] + ["None"]) |
|
body.append(f"; {to_delete_str}\n") |
|
else: |
|
body.append("\n") |
|
|
|
# NOTE: we add a variable to distinguish body and ckpt_func |
|
def emit_node(node: Node, body): |
|
maybe_type_annotation = "" if node.type is None else f" : {type_repr(node.type)}" |
|
if node.op == "placeholder": |
|
assert isinstance(node.target, str) |
|
maybe_default_arg = "" if not node.args else f" = {repr(node.args[0])}" |
|
free_vars.append(f"{node.target}{maybe_type_annotation}{maybe_default_arg}") |
|
raw_name = node.target.replace("*", "") |
|
if raw_name != repr(node): |
|
body.append(f"{repr(node)} = {raw_name}\n") |
|
return |
|
elif node.op == "call_method": |
|
assert isinstance(node.target, str) |
|
body.append( |
|
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.target)}" |
|
f"({_format_args(node.args[1:], node.kwargs)})" |
|
) |
|
return |
|
elif node.op == "call_function": |
|
assert callable(node.target) |
|
# pretty print operators |
|
if node.target.__module__ == "_operator" and node.target.__name__ in magic_methods: |
|
assert isinstance(node.args, tuple) |
|
body.append( |
|
f"{repr(node)}{maybe_type_annotation} = " |
|
f"{magic_methods[node.target.__name__].format(*(repr(a) for a in node.args))}" |
|
) |
|
return |
|
|
|
# pretty print inplace operators; required for jit.script to work properly |
|
# not currently supported in normal FX graphs, but generated by torchdynamo |
|
if node.target.__module__ == "_operator" and node.target.__name__ in inplace_methods: |
|
body.append( |
|
f"{inplace_methods[node.target.__name__].format(*(repr(a) for a in node.args))}; " |
|
f"{repr(node)}{maybe_type_annotation} = {repr(node.args[0])}" |
|
) |
|
return |
|
|
|
qualified_name = _get_qualified_name(node.target) |
|
global_name = add_global(qualified_name, node.target) |
|
# special case for getattr: node.args could be 2-argument or 3-argument |
|
# 2-argument: attribute access; 3-argument: fall through to attrib function call with default value |
|
if ( |
|
global_name == "getattr" |
|
and isinstance(node.args, tuple) |
|
and isinstance(node.args[1], str) |
|
and node.args[1].isidentifier() |
|
and len(node.args) == 2 |
|
): |
|
body.append( |
|
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.args[1])}" |
|
) |
|
return |
|
body.append( |
|
f"{repr(node)}{maybe_type_annotation} = {global_name}({_format_args(node.args, node.kwargs)})" |
|
) |
|
if node.meta.get("is_wrapped", False): |
|
wrapped_fns.setdefault(global_name) |
|
return |
|
elif node.op == "call_module": |
|
assert isinstance(node.target, str) |
|
body.append( |
|
f"{repr(node)}{maybe_type_annotation} = " |
|
f"{_format_target(root_module, node.target)}({_format_args(node.args, node.kwargs)})" |
|
) |
|
return |
|
elif node.op == "get_attr": |
|
assert isinstance(node.target, str) |
|
body.append(f"{repr(node)}{maybe_type_annotation} = {_format_target(root_module, node.target)}") |
|
return |
|
elif node.op == "output": |
|
if node.type is not None: |
|
maybe_return_annotation[0] = f" -> {type_repr(node.type)}" |
|
body.append(self.generate_output(node.args[0])) |
|
return |
|
raise NotImplementedError(f"node: {node.op} {node.target}") |
|
|
|
# Modified for activation checkpointing |
|
ckpt_func = [] |
|
|
|
# if any node has a list of labels for activation_checkpoint, we |
|
# will use nested type of activation checkpoint codegen |
|
if any(isinstance(node.meta.get("activation_checkpoint", None), Iterable) for node in nodes): |
|
emit_code_with_nested_activation_checkpoint(body, ckpt_func, nodes, emit_node, delete_unused_values) |
|
else: |
|
emit_code_with_activation_checkpoint(body, ckpt_func, nodes, emit_node, delete_unused_values) |
|
|
|
if len(body) == 0: |
|
# If the Graph has no non-placeholder nodes, no lines for the body |
|
# have been emitted. To continue to have valid Python code, emit a |
|
# single pass statement |
|
body.append("pass\n") |
|
|
|
if len(wrapped_fns) > 0: |
|
wrap_name = add_global("wrap", torch.fx.wrap) |
|
wrap_stmts = "\n".join([f'{wrap_name}("{name}")' for name in wrapped_fns]) |
|
else: |
|
wrap_stmts = "" |
|
|
|
if self._body_transformer: |
|
body = self._body_transformer(body) |
|
|
|
for name, value in self.additional_globals(): |
|
add_global(name, value) |
|
|
|
# as we need colossalai.utils.checkpoint, we need to import colossalai |
|
# in forward function |
|
prologue = self.gen_fn_def(free_vars, maybe_return_annotation[0]) |
|
prologue = "".join(ckpt_func) + prologue |
|
prologue = prologue |
|
|
|
code = "".join(body) |
|
code = "\n".join(" " + line for line in code.split("\n")) |
|
fn_code = f""" |
|
{wrap_stmts} |
|
{prologue} |
|
{code}""" |
|
return PythonCode(fn_code, globals_) |
|
|
|
else: |
|
|
|
def python_code_with_activation_checkpoint(self, root_module: str, namespace: _Namespace) -> PythonCode: |
|
""" |
|
This method is copied from the _python_code of torch.fx.graph.Graph. Modifications are made so that it can generate |
|
code for activation checkpoint. |
|
""" |
|
free_vars: List[str] = [] |
|
body: List[str] = [] |
|
globals_: Dict[str, Any] = {} |
|
wrapped_fns: Dict[str, None] = {} |
|
|
|
# Wrap string in list to pass by reference |
|
maybe_return_annotation: List[str] = [""] |
|
|
|
def add_global(name_hint: str, obj: Any): |
|
"""Add an obj to be tracked as a global. |
|
We call this for names that reference objects external to the |
|
Graph, like functions or types. |
|
Returns: the global name that should be used to reference 'obj' in generated source. |
|
""" |
|
if _is_from_torch(obj) and obj != torch.device: # to support registering torch.device |
|
# HACK: workaround for how torch custom ops are registered. We |
|
# can't import them like normal modules so they must retain their |
|
# fully qualified name. |
|
return _get_qualified_name(obj) |
|
|
|
# normalize the name hint to get a proper identifier |
|
global_name = namespace.create_name(name_hint, obj) |
|
|
|
if global_name in globals_: |
|
assert globals_[global_name] is obj |
|
return global_name |
|
globals_[global_name] = obj |
|
return global_name |
|
|
|
# set _custom_builtins here so that we needn't import colossalai in forward |
|
_custom_builtins["colossalai"] = _CustomBuiltin("import colossalai", colossalai) |
|
|
|
# Pre-fill the globals table with registered builtins. |
|
for name, (_, obj) in _custom_builtins.items(): |
|
add_global(name, obj) |
|
|
|
def type_repr(o: Any): |
|
if o == (): |
|
# Empty tuple is used for empty tuple type annotation Tuple[()] |
|
return "()" |
|
|
|
typename = _type_repr(o) |
|
|
|
# This is a generic type, e.g. typing.List[torch.Tensor] |
|
if hasattr(o, "__origin__"): |
|
origin_type = _origin_type_map.get(o.__origin__, o.__origin__) |
|
origin_typename = add_global(_type_repr(origin_type), origin_type) |
|
|
|
# Assign global names for each of the inner type variables. |
|
args = [type_repr(arg) for arg in o.__args__] |
|
|
|
return f'{origin_typename}[{",".join(args)}]' |
|
|
|
# Common case: this is a regular module name like 'foo.bar.baz' |
|
return add_global(typename, o) |
|
|
|
# Run through reverse nodes and record the first instance of a use |
|
# of a given node. This represents the *last* use of the node in the |
|
# execution order of the program, which we will use to free unused |
|
# values |
|
node_to_last_use: Dict[Node, Node] = {} |
|
user_to_last_uses: Dict[Node, List[Node]] = {} |
|
|
|
def register_last_uses(n: Node, user: Node): |
|
if n not in node_to_last_use: |
|
node_to_last_use[n] = user |
|
user_to_last_uses.setdefault(user, []).append(n) |
|
|
|
for node in reversed(self.nodes): |
|
map_arg(node.args, lambda n: register_last_uses(n, node)) |
|
map_arg(node.kwargs, lambda n: register_last_uses(n, node)) |
|
|
|
# NOTE: we add a variable to distinguish body and ckpt_func |
|
def delete_unused_values(user: Node, body): |
|
""" |
|
Delete values after their last use. This ensures that values that are |
|
not used in the remainder of the code are freed and the memory usage |
|
of the code is optimal. |
|
""" |
|
if user.op == "placeholder": |
|
return |
|
if user.op == "output": |
|
body.append("\n") |
|
return |
|
nodes_to_delete = user_to_last_uses.get(user, []) |
|
if len(nodes_to_delete): |
|
to_delete_str = " = ".join([repr(n) for n in nodes_to_delete] + ["None"]) |
|
body.append(f"; {to_delete_str}\n") |
|
else: |
|
body.append("\n") |
|
|
|
# NOTE: we add a variable to distinguish body and ckpt_func |
|
def emit_node(node: Node, body): |
|
maybe_type_annotation = "" if node.type is None else f" : {type_repr(node.type)}" |
|
if node.op == "placeholder": |
|
assert isinstance(node.target, str) |
|
maybe_default_arg = "" if not node.args else f" = {repr(node.args[0])}" |
|
free_vars.append(f"{node.target}{maybe_type_annotation}{maybe_default_arg}") |
|
raw_name = node.target.replace("*", "") |
|
if raw_name != repr(node): |
|
body.append(f"{repr(node)} = {raw_name}\n") |
|
return |
|
elif node.op == "call_method": |
|
assert isinstance(node.target, str) |
|
body.append( |
|
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.target)}" |
|
f"({_format_args(node.args[1:], node.kwargs)})" |
|
) |
|
return |
|
elif node.op == "call_function": |
|
assert callable(node.target) |
|
# pretty print operators |
|
if node.target.__module__ == "_operator" and node.target.__name__ in magic_methods: |
|
assert isinstance(node.args, tuple) |
|
body.append( |
|
f"{repr(node)}{maybe_type_annotation} = " |
|
f"{magic_methods[node.target.__name__].format(*(repr(a) for a in node.args))}" |
|
) |
|
return |
|
qualified_name = _get_qualified_name(node.target) |
|
global_name = add_global(qualified_name, node.target) |
|
# special case for getattr: node.args could be 2-argument or 3-argument |
|
# 2-argument: attribute access; 3-argument: fall through to attrib function call with default value |
|
if ( |
|
global_name == "getattr" |
|
and isinstance(node.args, tuple) |
|
and isinstance(node.args[1], str) |
|
and node.args[1].isidentifier() |
|
and len(node.args) == 2 |
|
): |
|
body.append( |
|
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.args[1])}" |
|
) |
|
return |
|
body.append( |
|
f"{repr(node)}{maybe_type_annotation} = {global_name}({_format_args(node.args, node.kwargs)})" |
|
) |
|
if node.meta.get("is_wrapped", False): |
|
wrapped_fns.setdefault(global_name) |
|
return |
|
elif node.op == "call_module": |
|
assert isinstance(node.target, str) |
|
body.append( |
|
f"{repr(node)}{maybe_type_annotation} = " |
|
f"{_format_target(root_module, node.target)}({_format_args(node.args, node.kwargs)})" |
|
) |
|
return |
|
elif node.op == "get_attr": |
|
assert isinstance(node.target, str) |
|
body.append(f"{repr(node)}{maybe_type_annotation} = {_format_target(root_module, node.target)}") |
|
return |
|
elif node.op == "output": |
|
if node.type is not None: |
|
maybe_return_annotation[0] = f" -> {type_repr(node.type)}" |
|
if self._pytree_info is None: |
|
body.append(f"return {repr(node.args[0])}") |
|
else: |
|
body.append(f"return pytree.tree_unflatten({repr(node.args[0])}, self._out_spec)") |
|
return |
|
raise NotImplementedError(f"node: {node.op} {node.target}") |
|
|
|
# Modified for activation checkpointing |
|
ckpt_func = [] |
|
|
|
# if any node has a list of labels for activation_checkpoint, we |
|
# will use nested type of activation checkpoint codegen |
|
if any(isinstance(node.meta.get("activation_checkpoint", None), Iterable) for node in self.nodes): |
|
emit_code_with_nested_activation_checkpoint(body, ckpt_func, self.nodes, emit_node, delete_unused_values) |
|
else: |
|
emit_code_with_activation_checkpoint(body, ckpt_func, self.nodes, emit_node, delete_unused_values) |
|
|
|
if len(body) == 0: |
|
# If the Graph has no non-placeholder nodes, no lines for the body |
|
# have been emitted. To continue to have valid Python code, emit a |
|
# single pass statement |
|
body.append("pass\n") |
|
if self._pytree_info is not None: |
|
orig_args = self._pytree_info.orig_args |
|
has_orig_self = orig_args[0] == "self" |
|
if has_orig_self: |
|
free_vars.insert(0, "self") |
|
if len(free_vars) > 0: # pytree has placeholders in it |
|
body.insert( |
|
0, |
|
f"{', '.join(free_vars)}, = fx_pytree.tree_flatten_spec([{', '.join(orig_args)}], self._in_spec)\n", |
|
) |
|
else: |
|
orig_args = free_vars |
|
|
|
if len(wrapped_fns) > 0: |
|
wrap_name = add_global("wrap", torch.fx.wrap) |
|
wrap_stmts = "\n".join([f'{wrap_name}("{name}")' for name in wrapped_fns]) |
|
else: |
|
wrap_stmts = "" |
|
|
|
ckpt_func = "".join(ckpt_func) |
|
|
|
# If the original function didn't have self as its first argument, we |
|
# would have added it. |
|
if len(orig_args) == 0 or orig_args[0] != "self": |
|
orig_args.insert(0, "self") |
|
code = "".join(body) |
|
code = "\n".join(" " + line for line in code.split("\n")) |
|
|
|
# as we need colossalai.utils.checkpoint, we need to import colossalai |
|
# in forward function |
|
fn_code = f""" |
|
{wrap_stmts} |
|
{ckpt_func} |
|
def forward({', '.join(orig_args)}){maybe_return_annotation[0]}: |
|
{code}""" |
|
return PythonCode(fn_code, globals_)
|
|
|