ColossalAI/tests/kit/model_zoo/transformers/whisper.py

98 lines
3.6 KiB
Python

import torch
import transformers
from ..registry import ModelAttribute, model_zoo
# ===============================
# Register single-sentence Whisper
# ===============================
# define data gen function
def data_gen():
# Generated from following code snippet
#
# from transformers import AutoFeatureExtractor, WhisperModel
# from datasets import load_dataset
# model = WhisperModel.from_pretrained("openai/whisper-base")
# feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base")
# ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt")
# input_features = inputs.input_features
# decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
input_features = torch.rand(1, 80, 3000)
decoder_input_ids = torch.tensor([[1, 1]]) * 50258
return dict(input_features=input_features, decoder_input_ids=decoder_input_ids)
def data_gen_for_conditional_generation():
# labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
# Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
# or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is
# only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
data = data_gen()
data["labels"] = torch.tensor([[0, 1]], dtype=torch.int64)
return data
def data_gen_for_audio_classification():
# labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
# Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
# config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
# `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
# `WhisperForAudioClassification` does not need `decoder_input_ids`
data = data_gen()
data.pop("decoder_input_ids")
data["labels"] = torch.tensor([1], dtype=torch.int64)
return data
# define output transform function
output_transform_fn = lambda x: x
# define loss funciton
loss_fn = lambda x: torch.nn.functional.mse_loss(x.last_hidden_state, torch.ones_like(x.last_hidden_state))
loss_fn_attr = lambda x: x.loss
config = transformers.WhisperConfig(
classifier_proj_size=256,
d_model=256,
decoder_attention_heads=4,
decoder_ffn_dim=1536,
decoder_layers=2,
encoder_attention_heads=4,
encoder_ffn_dim=1536,
encoder_layers=2,
vocab_size=51866,
)
# register the Whisper variants
model_zoo.register(
name="transformers_whisper",
model_fn=lambda: transformers.WhisperModel(config),
data_gen_fn=data_gen,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_whisper_for_conditional_generation",
model_fn=lambda: transformers.WhisperForConditionalGeneration(config),
data_gen_fn=data_gen_for_conditional_generation,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_attr,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_whisper_for_audio_classification",
model_fn=lambda: transformers.WhisperForAudioClassification(config),
data_gen_fn=data_gen_for_audio_classification,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_attr,
model_attribute=ModelAttribute(has_control_flow=True),
)