mirror of https://github.com/hpcaitech/ColossalAI
139 lines
4.6 KiB
Python
139 lines
4.6 KiB
Python
import pytest
|
|
import torch
|
|
import torch.distributed as dist
|
|
|
|
import colossalai
|
|
from colossalai.context import ParallelMode
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
|
|
|
CONFIG = dict(parallel=dict(tensor=dict(size=4, mode='sequence')))
|
|
|
|
|
|
def check_ring_qk(rank, world_size):
|
|
# params
|
|
batch_size = 4
|
|
num_heads = 4
|
|
seq_length = 32
|
|
attention_head_size = 32
|
|
sub_seq_length = seq_length // world_size
|
|
|
|
# create master tensors
|
|
q = torch.rand(batch_size * num_heads, seq_length, attention_head_size).cuda()
|
|
k = torch.rand(batch_size * num_heads, seq_length, attention_head_size).cuda()
|
|
dist.broadcast(q, src=0, group=gpc.get_group(ParallelMode.SEQUENCE))
|
|
dist.broadcast(k, src=0, group=gpc.get_group(ParallelMode.SEQUENCE))
|
|
|
|
# create distributed tensors
|
|
sub_q = q.clone()[:, rank * sub_seq_length:(rank + 1) * sub_seq_length].contiguous()
|
|
sub_k = k.clone()[:, rank * sub_seq_length:(rank + 1) * sub_seq_length].contiguous()
|
|
|
|
# set autograd attributes
|
|
q.requires_grad = True
|
|
k.requires_grad = True
|
|
q.retain_grad()
|
|
k.retain_grad()
|
|
sub_q.requires_grad = True
|
|
sub_k.requires_grad = True
|
|
sub_q.retain_grad()
|
|
sub_k.retain_grad()
|
|
|
|
# compute master attention scores
|
|
a = torch.matmul(q, k.transpose(2, 1))
|
|
|
|
# compute distributed attention scores
|
|
ring_qk = colossalai.nn.layer.parallel_sequence.RingQK.apply
|
|
sub_a = ring_qk(sub_q, sub_k, batch_size, num_heads, sub_seq_length)
|
|
|
|
# check master and distributed attetion scores
|
|
sub_master_a = a[:, rank * sub_seq_length:(rank + 1) * sub_seq_length]
|
|
assert torch.allclose(sub_a, sub_master_a, rtol=1e-5, atol=1e-2)
|
|
|
|
# run master backward
|
|
a.retain_grad()
|
|
a.mean().backward()
|
|
|
|
# run distributed backward
|
|
partial_master_a_grad = a.grad[:, rank * sub_seq_length:(rank + 1) * sub_seq_length]
|
|
torch.autograd.backward(sub_a, partial_master_a_grad)
|
|
|
|
# check master and distributed grads
|
|
partial_master_q_grad = q.grad[:, rank * sub_seq_length:(rank + 1) * sub_seq_length]
|
|
assert torch.allclose(sub_q.grad, partial_master_q_grad, rtol=1e-5, atol=1e-2), \
|
|
'attention score cannot match'
|
|
|
|
|
|
def check_ring_av(rank, world_size):
|
|
# params
|
|
batch_size = 4
|
|
num_heads = 4
|
|
seq_length = 16
|
|
attention_head_size = 32
|
|
sub_seq_length = seq_length // world_size
|
|
|
|
# create master tensors
|
|
a = torch.rand(batch_size * num_heads, seq_length, seq_length).cuda()
|
|
v = torch.rand(batch_size * num_heads, seq_length, attention_head_size).cuda()
|
|
dist.broadcast(a, src=0, group=gpc.get_group(ParallelMode.SEQUENCE))
|
|
dist.broadcast(v, src=0, group=gpc.get_group(ParallelMode.SEQUENCE))
|
|
|
|
# create distributed tensors
|
|
sub_a = a.clone()[:, rank * sub_seq_length:(rank + 1) * sub_seq_length].contiguous()
|
|
sub_v = v.clone()[:, rank * sub_seq_length:(rank + 1) * sub_seq_length].contiguous()
|
|
|
|
# set autograd attributes
|
|
a.requires_grad = True
|
|
v.requires_grad = True
|
|
a.retain_grad()
|
|
v.retain_grad()
|
|
sub_a.requires_grad = True
|
|
sub_v.requires_grad = True
|
|
sub_a.retain_grad()
|
|
sub_v.retain_grad()
|
|
|
|
# compute master attention scores
|
|
out = torch.matmul(a, v)
|
|
|
|
# compute distributed attention scores
|
|
ring_av = colossalai.nn.layer.parallel_sequence.RingAV.apply
|
|
sub_out = ring_av(sub_a, sub_v, batch_size, num_heads, attention_head_size, sub_seq_length)
|
|
|
|
# print(f'master output shape: {out.shape}, partial output shape: {sub_out.shape}')
|
|
|
|
# check master and distributed output
|
|
sub_master_out = out[:, rank * sub_seq_length:(rank + 1) * sub_seq_length]
|
|
assert torch.allclose(sub_out, sub_master_out, rtol=1e-5, atol=1e-2)
|
|
|
|
# # run master backward
|
|
out.retain_grad()
|
|
out.mean().backward()
|
|
|
|
# # run distributed backward
|
|
partial_master_out_grad = out.grad[:, rank * sub_seq_length:(rank + 1) * sub_seq_length]
|
|
torch.autograd.backward(sub_out, partial_master_out_grad)
|
|
|
|
# # check master and distributed grads
|
|
partial_master_a_grad = a.grad[:, rank * sub_seq_length:(rank + 1) * sub_seq_length]
|
|
assert torch.allclose(sub_a.grad, partial_master_a_grad, rtol=1e-5, atol=1e-2), \
|
|
'attention output cannot match'
|
|
|
|
|
|
def run_test(rank, world_size, port):
|
|
colossalai.launch(rank=rank, world_size=world_size, config=CONFIG, host='localhost', port=port)
|
|
|
|
# check_ring_qk(rank, world_size)
|
|
check_ring_av(rank, world_size)
|
|
|
|
gpc.destroy()
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
@pytest.mark.dist
|
|
@rerun_if_address_is_in_use()
|
|
def test_sequence():
|
|
spawn(run_test, 4)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_sequence()
|