mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
92 lines
4.8 KiB
92 lines
4.8 KiB
from torch.optim.lr_scheduler import OneCycleLR as _OneCycleLR
|
|
|
|
from colossalai.registry import LR_SCHEDULERS
|
|
|
|
|
|
@LR_SCHEDULERS.register_module
|
|
class OneCycleLR(_OneCycleLR):
|
|
r"""Sets the learning rate of each parameter group according to the
|
|
1cycle learning rate policy. The 1cycle policy anneals the learning
|
|
rate from an initial learning rate to some maximum learning rate and then
|
|
from that maximum learning rate to some minimum learning rate much lower
|
|
than the initial learning rate.
|
|
This policy was initially described in the paper `Super-Convergence:
|
|
Very Fast Training of Neural Networks Using Large Learning Rates`_.
|
|
The 1cycle learning rate policy changes the learning rate after every batch.
|
|
`step` should be called after a batch has been used for training.
|
|
This scheduler is not chainable.
|
|
Note also that the total number of steps in the cycle can be determined in one
|
|
of two ways (listed in order of precedence):
|
|
|
|
* A value for total_steps is explicitly provided.
|
|
* A number of epochs (epochs) and a number of steps per epoch (steps_per_epoch) are provided.
|
|
In this case, the number of total steps is inferred by total_steps = epochs * steps_per_epoch
|
|
|
|
You must either provide a value for total_steps or provide a value for both
|
|
epochs and steps_per_epoch.
|
|
The default behaviour of this scheduler follows the fastai implementation of 1cycle, which
|
|
claims that "unpublished work has shown even better results by using only two phases". To
|
|
mimic the behaviour of the original paper instead, set ``three_phase=True``.
|
|
|
|
:param optimizer: Wrapped optimizer
|
|
:type optimizer: torch.optim.Optimizer
|
|
:param total_steps: Number of total training steps
|
|
:type total_steps: int
|
|
:param pct_start: The percentage of the cycle (in number of steps) spent increasing the learning rate, defaults to 0.3
|
|
:type pct_start: float, optional
|
|
:param anneal_strategy: {'cos', 'linear'}
|
|
Specifies the annealing strategy: "cos" for cosine annealing, "linear" for
|
|
linear annealing, defaults to 'cos'
|
|
:type anneal_strategy: str, optional
|
|
:param cycle_momentum: If ``True``, momentum is cycled inversely
|
|
to learning rate between 'base_momentum' and 'max_momentum', defaults to True
|
|
:type cycle_momentum: bool, optional
|
|
:param base_momentum: Lower momentum boundaries in the cycle
|
|
for each parameter group. Note that momentum is cycled inversely
|
|
to learning rate; at the peak of a cycle, momentum is
|
|
'base_momentum' and learning rate is 'max_lr', defaults to 0.85
|
|
:type base_momentum: float, optional
|
|
:param max_momentum: Upper momentum boundaries in the cycle
|
|
for each parameter group. Functionally,
|
|
it defines the cycle amplitude (max_momentum - base_momentum).
|
|
Note that momentum is cycled inversely
|
|
to learning rate; at the start of a cycle, momentum is 'max_momentum'
|
|
and learning rate is 'base_lr', defaults to 0.95
|
|
:type max_momentum: float, optional
|
|
:param div_factor: Determines the initial learning rate via
|
|
initial_lr = max_lr/div_factor, defaults to 25.0
|
|
:type div_factor: float, optional
|
|
:param final_div_factor: Determines the minimum learning rate via
|
|
min_lr = initial_lr/final_div_factor, defaults to 10000.0
|
|
:type final_div_factor: float, optional
|
|
:param last_epoch: The index of the last batch. This parameter is used when
|
|
resuming a training job. Since `step()` should be invoked after each
|
|
batch instead of after each epoch, this number represents the total
|
|
number of *batches* computed, not the total number of epochs computed.
|
|
When last_epoch=-1, the schedule is started from the beginning, defaults to -1
|
|
:type last_epoch: int, optional
|
|
|
|
.. _Super-Convergence\: Very Fast Training of Neural Networks Using Large Learning Rates:
|
|
https://arxiv.org/abs/1708.07120
|
|
"""
|
|
|
|
def __init__(self, optimizer, total_steps: int,
|
|
pct_start=0.3,
|
|
anneal_strategy='cos',
|
|
cycle_momentum=True,
|
|
base_momentum=0.85,
|
|
max_momentum=0.95,
|
|
div_factor=25.0,
|
|
final_div_factor=10000.0,
|
|
last_epoch=-1, **kwargs):
|
|
max_lrs = list(map(lambda group: group['lr'], optimizer.param_groups))
|
|
super().__init__(optimizer, max_lrs, total_steps=total_steps,
|
|
pct_start=pct_start,
|
|
anneal_strategy=anneal_strategy,
|
|
cycle_momentum=cycle_momentum,
|
|
base_momentum=base_momentum,
|
|
max_momentum=max_momentum,
|
|
div_factor=div_factor,
|
|
final_div_factor=final_div_factor,
|
|
last_epoch=last_epoch)
|