mirror of https://github.com/hpcaitech/ColossalAI
140 lines
5.7 KiB
Python
140 lines
5.7 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
from abc import ABC, abstractmethod
|
|
|
|
import torch
|
|
|
|
from typing import Iterable, Callable
|
|
from colossalai.logging import get_dist_logger
|
|
from colossalai.utils import get_current_device
|
|
|
|
|
|
class BaseSchedule(ABC):
|
|
"""A basic helper class to control the process of training or evaluation.
|
|
It mainly composes of forward_backward_step for gradient backward and
|
|
optimizer_step for parameters update.
|
|
For the convenience to enable FP16, we aggregate all codes that contain the
|
|
control of FP16 in class schedule.
|
|
|
|
Args:
|
|
data_process_func (Callable, optional): The preprocessing function which receives a batch of data and arranges them into data and label.
|
|
"""
|
|
|
|
def __init__(self, data_process_func: Callable = None):
|
|
self.logger = get_dist_logger()
|
|
self.data_process_func = data_process_func
|
|
|
|
@staticmethod
|
|
def _move_tensor(element):
|
|
if torch.is_tensor(element):
|
|
if not element.is_cuda:
|
|
return element.to(get_current_device()).detach()
|
|
return element
|
|
|
|
def _move_to_device(self, data):
|
|
if isinstance(data, torch.Tensor):
|
|
data = data.to(get_current_device())
|
|
elif isinstance(data, (list, tuple)):
|
|
data_to_return = []
|
|
for element in data:
|
|
if isinstance(element, dict):
|
|
data_to_return.append({k: self._move_tensor(v) for k, v in element.items()})
|
|
else:
|
|
data_to_return.append(self._move_tensor(element))
|
|
data = data_to_return
|
|
elif isinstance(data, dict):
|
|
data = {k: self._move_tensor(v) for k, v in data.items()}
|
|
else:
|
|
raise TypeError(
|
|
f"Expected batch data to be of type torch.Tensor, list, tuple, or dict, but got {type(data)}")
|
|
return data
|
|
|
|
def _get_batch_size(self, data):
|
|
if isinstance(data, torch.Tensor):
|
|
return data.size(0)
|
|
elif isinstance(data, (list, tuple)):
|
|
if isinstance(data[0], dict):
|
|
return data[0][list(data[0].keys())[0]].size(0)
|
|
return data[0].size(0)
|
|
elif isinstance(data, dict):
|
|
return data[list(data.keys())[0]].size(0)
|
|
|
|
def load_batch(self, data_iter, to_gpu=True):
|
|
"""Loads a batch from data iterator. It returns the data and labels which are
|
|
already in the same GPU as where the model's.
|
|
|
|
Args:
|
|
data_iter (Iterable): Data iterator from which get a batch of data, obtained by calling iter(dataloader).
|
|
to_gpu (bool, optional): Whether the data should be moved to GPU
|
|
|
|
Returns:
|
|
Tuple (:class:`Tensor`, :class:`torch.Tensor`): A tuple of (data, label).
|
|
"""
|
|
if data_iter is None:
|
|
raise RuntimeError('Dataloader is not defined.')
|
|
batch_data = next(data_iter)
|
|
|
|
if to_gpu:
|
|
batch_data = self._move_to_device(batch_data)
|
|
self.batch_size = self._get_batch_size(batch_data)
|
|
return batch_data
|
|
|
|
def pre_processing(self, engine):
|
|
"""To perform actions before running the schedule.
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def forward_backward_step(self,
|
|
engine,
|
|
data_iter: Iterable,
|
|
forward_only: bool,
|
|
return_loss: bool = True,
|
|
return_output_label: bool = True):
|
|
"""The process function over a batch of dataset for training or evaluation.
|
|
|
|
Args:
|
|
engine (colossalai.engine.Engine): Colossalai engine for training and inference.
|
|
data_iter (Iterable): Data iterator from which get a batch of data, obtained by calling iter(dataloader).
|
|
forward_only (bool): If True, the process won't include backward.
|
|
return_loss (bool, optional): If False, the loss won't be returned.
|
|
return_output_label (bool, optional): If False, the output and label won't be returned.
|
|
"""
|
|
pass
|
|
|
|
@staticmethod
|
|
def _call_engine(engine, inputs):
|
|
if isinstance(inputs, torch.Tensor):
|
|
return engine(inputs)
|
|
elif isinstance(inputs, (list, tuple)):
|
|
return engine(*inputs)
|
|
elif isinstance(inputs, dict):
|
|
return engine(**inputs)
|
|
else:
|
|
TypeError(
|
|
f"Expected engine inputs to be of type torch.Tensor, list, tuple, or dict, but got {type(inputs)}")
|
|
|
|
@staticmethod
|
|
def _call_engine_criterion(engine, outputs, labels):
|
|
assert isinstance(outputs,
|
|
(torch.Tensor, list, tuple,
|
|
dict)), f'Expect output of model is (torch.Tensor, list, tuple), got {type(outputs)}'
|
|
if isinstance(outputs, torch.Tensor):
|
|
outputs = (outputs,)
|
|
if isinstance(labels, torch.Tensor):
|
|
labels = (labels,)
|
|
|
|
if isinstance(outputs, (tuple, list)) and isinstance(labels, (tuple, list)):
|
|
return engine.criterion(*outputs, *labels)
|
|
elif isinstance(outputs, (tuple, list)) and isinstance(labels, dict):
|
|
return engine.criterion(*outputs, **labels)
|
|
elif isinstance(outputs, dict) and isinstance(labels, dict):
|
|
return engine.criterion(**outputs, **labels)
|
|
elif isinstance(outputs, dict) and isinstance(labels, (list, tuple)):
|
|
raise ValueError(f"Expected labels to be a dict when the model outputs are dict, but got {type(labels)}")
|
|
else:
|
|
raise TypeError(f"Expected model outputs and labels to be of type torch.Tensor ' \
|
|
'(which is auto-converted to tuple), list, tuple, or dict, ' \
|
|
'but got {type(outputs)} (model outputs) and {type(labels)} (labels)")
|