ColossalAI/tests/test_zero/test_gemini/test_runtime_mem_tracer.py

55 lines
1.8 KiB
Python

from copy import deepcopy
import numpy as np
import pytest
import torch
from colossalai.testing import DummyDataloader, clear_cache_before_run
from colossalai.zero.gemini.memory_tracer.runtime_mem_tracer import RuntimeMemTracer
from tests.kit.model_zoo import model_zoo, run_fwd_bwd
@pytest.mark.skip("this is not used")
@clear_cache_before_run()
def test_runtime_mem_tracer():
test_models = ["gpt2", "bert", "simple_net", "repeated_computed_layers", "nested_model", "albert"]
for model_name in test_models:
model_builder, data_gen_fn, output_transform_fn, *_ = next(
iter(model_zoo.get_sub_registry(model_name).values())
)
model = model_builder().cuda()
model_bk = deepcopy(model)
runtime_mem_tracer = RuntimeMemTracer(model)
train_dataloader = DummyDataloader(data_gen_fn)
for i, data in enumerate(train_dataloader):
if i > 1:
break
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
run_fwd_bwd(runtime_mem_tracer, data, output_transform_fn, optimizer=runtime_mem_tracer)
for p1, p2 in zip(model_bk.parameters(), model.parameters()):
torch.allclose(p1.to(torch.half), p2)
non_model_data_list = runtime_mem_tracer._memstats.non_model_data_list("cuda")
cuda_non_model_data_list = np.array(non_model_data_list) / 1024**2
print("cuda_non_model_data_list", len(cuda_non_model_data_list))
print(non_model_data_list)
cnt1 = 0
for p in runtime_mem_tracer.parameters_in_runtime_order():
cnt1 += 1
cnt2 = 0
for p in model.parameters():
cnt2 += 1
assert cnt2 == cnt1, f"visited param number {cnt1} vs real param number {cnt2}"
del model
if __name__ == "__main__":
test_runtime_mem_tracer()