mirror of https://github.com/hpcaitech/ColossalAI
55 lines
1.8 KiB
Python
55 lines
1.8 KiB
Python
from copy import deepcopy
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
|
|
from colossalai.testing import DummyDataloader, clear_cache_before_run
|
|
from colossalai.zero.gemini.memory_tracer.runtime_mem_tracer import RuntimeMemTracer
|
|
from tests.kit.model_zoo import model_zoo, run_fwd_bwd
|
|
|
|
|
|
@pytest.mark.skip("this is not used")
|
|
@clear_cache_before_run()
|
|
def test_runtime_mem_tracer():
|
|
test_models = ["gpt2", "bert", "simple_net", "repeated_computed_layers", "nested_model", "albert"]
|
|
|
|
for model_name in test_models:
|
|
model_builder, data_gen_fn, output_transform_fn, *_ = next(
|
|
iter(model_zoo.get_sub_registry(model_name).values())
|
|
)
|
|
|
|
model = model_builder().cuda()
|
|
|
|
model_bk = deepcopy(model)
|
|
runtime_mem_tracer = RuntimeMemTracer(model)
|
|
|
|
train_dataloader = DummyDataloader(data_gen_fn)
|
|
for i, data in enumerate(train_dataloader):
|
|
if i > 1:
|
|
break
|
|
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
|
|
|
|
run_fwd_bwd(runtime_mem_tracer, data, output_transform_fn, optimizer=runtime_mem_tracer)
|
|
|
|
for p1, p2 in zip(model_bk.parameters(), model.parameters()):
|
|
torch.allclose(p1.to(torch.half), p2)
|
|
|
|
non_model_data_list = runtime_mem_tracer._memstats.non_model_data_list("cuda")
|
|
cuda_non_model_data_list = np.array(non_model_data_list) / 1024**2
|
|
print("cuda_non_model_data_list", len(cuda_non_model_data_list))
|
|
print(non_model_data_list)
|
|
|
|
cnt1 = 0
|
|
for p in runtime_mem_tracer.parameters_in_runtime_order():
|
|
cnt1 += 1
|
|
cnt2 = 0
|
|
for p in model.parameters():
|
|
cnt2 += 1
|
|
assert cnt2 == cnt1, f"visited param number {cnt1} vs real param number {cnt2}"
|
|
del model
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_runtime_mem_tracer()
|