ColossalAI/tests/test_shardformer/test_model/test_shard_whisper.py

221 lines
6.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import pytest
import torch
import colossalai
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer.layer.utils import Randomizer
from colossalai.tensor.d_tensor.api import clear_layout_converter
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
from tests.kit.model_zoo import model_zoo
from tests.test_shardformer.test_model._utils import (
build_model_from_hybrid_plugin,
check_all_grad_tensors,
check_loss,
check_output_hidden_state,
check_weight,
get_grad_tensors_for_check,
run_forward_backward_with_hybrid_plugin,
)
def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config):
# check forward
org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster = build_model_from_hybrid_plugin(
model_fn, loss_fn, test_config
)
org_loss, org_output, sharded_loss, sharded_output = run_forward_backward_with_hybrid_plugin(
org_model, sharded_model, sharded_optimizer, data_gen_fn, output_transform_fn, criterion, booster
)
stage_manager = booster.plugin.stage_manager
tp_group = booster.plugin.tp_group
# unwarp the model
if org_model.__class__.__name__ == "WhisperForConditionalGeneration":
whisper = org_model.model
sharded_whisper = sharded_model.unwrap().model
else:
whisper = org_model
sharded_whisper = sharded_model.unwrap()
# check grad
if org_model.__class__.__name__ == "WhisperForAudioClassification":
col_layer_for_check = ["encoder.layers[0].self_attn.q_proj"]
row_layer_for_check = ["encoder.layers[0].self_attn.out_proj"]
else:
col_layer_for_check = [
"encoder.layers[0].self_attn.q_proj",
# 'decoder.layers[0].self_attn.q_proj'
]
row_layer_for_check = [
"encoder.layers[0].self_attn.out_proj",
#'decoder.layers[0].self_attn.out_proj'
]
# Save gradient tensors for comparison between the original model and the sharded model before optimizer step.
grads_to_check = {}
if test_config["precision"] == "fp32":
atol, rtol = 2e-4, 2e-4
else:
atol, rtol = 5e-3, 5e-3
if stage_manager is None or stage_manager.is_first_stage():
row_layer_grads = get_grad_tensors_for_check(
whisper, sharded_whisper, row_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1
)
col_layer_grads = get_grad_tensors_for_check(
whisper, sharded_whisper, col_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=0
)
grads_to_check.update(col_layer_grads)
grads_to_check.update(row_layer_grads)
# optimizer executes step
org_optimizer.step()
sharded_optimizer.step()
# check last hidden state & loss
if stage_manager is None or stage_manager.is_last_stage():
if test_config["precision"] == "fp32":
atol, rtol = 2e-4, 2e-4
else:
atol, rtol = 5e-3, 5e-3
if org_model.__class__.__name__ == "WhisperModel":
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=atol, rtol=rtol)
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol)
# check weights
if test_config["precision"] == "fp32":
atol, rtol = 1e-3, 1e-3
else:
atol, rtol = 5e-3, 5e-3
if stage_manager is None or stage_manager.is_first_stage():
check_weight(
whisper, sharded_whisper, row_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1, verbose=False
)
check_weight(
whisper, sharded_whisper, col_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=0, verbose=False
)
# check grads
check_all_grad_tensors(grads_to_check)
torch.cuda.empty_cache()
# TODO fix WhisperForConditionalGeneration enable jit fused operato
# TODOjianghai) fix fp16
@parameterize(
"test_config",
[
{
"tp_size": 2,
"pp_size": 2,
"num_microbatches": 2,
"enable_all_optimization": True,
"use_lazy_init": True,
"precision": "fp32",
"initial_scale": 1,
},
{
"tp_size": 1,
"pp_size": 2,
"num_microbatches": 4,
"use_lazy_init": False,
"precision": "fp32",
"initial_scale": 1,
},
{
"tp_size": 4,
"pp_size": 1,
"enable_all_optimization": True,
"use_lazy_init": False,
"precision": "fp32",
},
{
"tp_size": 1,
"pp_size": 4,
"num_microbatches": 4,
"use_lazy_init": False,
"precision": "fp32",
},
# whisper is not supported fp16 for now.
],
)
def run_whisper_test(test_config):
sub_model_zoo = model_zoo.get_sub_registry("transformers_whisper")
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
if test_config["pp_size"] > 2 and name == "transformers_whisper_for_audio_classification":
continue
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
clear_layout_converter()
Randomizer.reset_index()
torch.cuda.empty_cache()
@parameterize(
"test_config",
[
{
"tp_size": 2,
"pp_size": 2,
"num_microbatches": 4,
"enable_all_optimization": False,
"use_lazy_init": False,
"precision": "fp32",
"initial_scale": 1,
},
{
"tp_size": 2,
"pp_size": 2,
"num_microbatches": 2,
"enable_all_optimization": False,
"use_lazy_init": False,
"precision": "fp32",
"initial_scale": 1,
},
],
)
def run_whisper_3d_test(test_config):
sub_model_zoo = model_zoo.get_sub_registry("transformers_whisper")
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
clear_layout_converter()
torch.cuda.empty_cache()
def check_whisper(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_whisper_test()
def check_whisper_3d(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_whisper_3d_test()
@pytest.mark.dist
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_whisper():
spawn(check_whisper, 4)
@pytest.mark.largedist
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_whisper_3d():
spawn(check_whisper_3d, 8)
if __name__ == "__main__":
test_whisper()
test_whisper_3d()