ColossalAI/tests/test_moe/test_moe_checkpoint.py

51 lines
1.4 KiB
Python

import os
import pytest
import torch
import torch.distributed as dist
import colossalai
from colossalai.context import MOE_CONTEXT
from colossalai.nn.layer.moe import load_moe_model, save_moe_model
from colossalai.testing import rerun_if_address_is_in_use, spawn
from colossalai.utils import get_current_device
from colossalai.zero import ColoInitContext
from tests.test_moe.test_moe_zero_init import MoeModel
from tests.test_zero.test_legacy.common import CONFIG
def exam_moe_checkpoint():
with ColoInitContext(device=get_current_device()):
model = MoeModel(checkpoint=True)
save_moe_model(model, "temp_path.pth")
with ColoInitContext(device=get_current_device()):
other_model = MoeModel(checkpoint=True)
load_moe_model(other_model, "temp_path.pth")
state_0 = model.state_dict()
state_1 = other_model.state_dict()
for k, v in state_0.items():
u = state_1.get(k)
assert torch.equal(u.data, v.data)
if dist.get_rank() == 0:
os.remove("temp_path.pth")
def _run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
MOE_CONTEXT.setup(seed=42)
exam_moe_checkpoint()
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2, 4])
@rerun_if_address_is_in_use()
def test_moe_checkpoint(world_size):
spawn(_run_dist)
if __name__ == "__main__":
test_moe_checkpoint(world_size=4)