ColossalAI/tests/test_legacy/test_trainer/test_pipeline/test_p2p.py

111 lines
3.7 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import pytest
import torch
import torch.distributed as dist
from colossalai.legacy.communication import (
recv_backward,
recv_forward,
send_backward,
send_backward_recv_forward,
send_forward,
send_forward_recv_backward,
)
from colossalai.legacy.context.parallel_mode import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.initialize import launch
from colossalai.logging import get_dist_logger
from colossalai.testing import rerun_if_address_is_in_use, spawn
from colossalai.utils import get_current_device
BATCH_SIZE = 4
SEQ_LENGTH = 2
HIDDEN_SIZE = 16
CONFIG = dict(parallel=dict(pipeline=dict(size=4), tensor=dict(size=1, mode=None)), seed=1024)
def check_equal(A, B):
return torch.allclose(A, B, rtol=1e-5, atol=1e-3)
def check_forward(output_tensor, rank, logger):
dist.barrier()
if gpc.is_first_rank(ParallelMode.PIPELINE):
tensor = output_tensor.clone()
else:
tensor = recv_forward(output_tensor.shape)
logger.info("Rank {} received forward. Correct tensor: {}".format(rank, check_equal(tensor, output_tensor)))
if not gpc.is_last_rank(ParallelMode.PIPELINE):
send_forward(tensor)
logger.info("Rank {} sent forward.".format(rank))
def check_backward(output_grad, rank, logger):
dist.barrier()
if gpc.is_last_rank(ParallelMode.PIPELINE):
grad = output_grad.clone()
else:
grad = recv_backward(output_grad.shape)
logger.info("Rank {} received backward. Correct grad: {}".format(rank, check_equal(grad, output_grad)))
if not gpc.is_first_rank(ParallelMode.PIPELINE):
send_backward(grad)
logger.info("Rank {} sent backward.".format(rank))
def check_forward_backward(output_tensor, output_grad, rank, logger):
dist.barrier()
if not gpc.is_first_rank(ParallelMode.PIPELINE):
tensor = send_backward_recv_forward(output_grad, output_tensor.shape)
logger.info(
"Rank {} sent backward received forward. Correct tensor: {}".format(
rank, check_equal(tensor, output_tensor)
)
)
if not gpc.is_last_rank(ParallelMode.PIPELINE):
grad = send_forward_recv_backward(output_tensor, output_grad.shape)
logger.info(
"Rank {} sent forward received backward. Correct grad: {}".format(rank, check_equal(grad, output_grad))
)
def check_comm(size, rank, prev_rank, next_rank, logger):
dtype = torch.float32
device = get_current_device()
tensor_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
grad_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
tensor = torch.randn(tensor_shape, dtype=dtype, device=device)
dist.all_reduce(tensor)
grad = torch.randn(grad_shape, dtype=dtype, device=device)
dist.all_reduce(grad)
check_forward(tensor, rank, logger)
check_backward(grad, rank, logger)
check_forward_backward(tensor, grad, rank, logger)
def run_check(rank, world_size, port):
launch(config=CONFIG, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
logger = get_dist_logger()
rank = gpc.get_global_rank()
prev_rank = gpc.get_prev_global_rank(ParallelMode.PIPELINE)
next_rank = gpc.get_next_global_rank(ParallelMode.PIPELINE)
logger.info("Rank {0}: prev rank {1}, next rank {2}".format(rank, prev_rank, next_rank))
logger.info("Distributed environment is initialized.")
check_comm(world_size, rank, prev_rank, next_rank, logger)
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_p2p():
world_size = 4
spawn(run_check, world_size)
if __name__ == "__main__":
test_p2p()