ColossalAI/tests/test_legacy/test_pipeline/test_middleware_1f1b.py

143 lines
4.4 KiB
Python

import os
from functools import partial
import pytest
import torch
import torch.distributed.rpc as rpc
from rpc_test_utils import DAG_MLP, MLP
from torch._C._distributed_rpc import _is_current_rpc_agent_set
from colossalai.fx import ColoTracer
from colossalai.fx.passes.adding_split_node_pass import balanced_split_pass, split_with_split_nodes_pass
from colossalai.legacy import launch
from colossalai.legacy.pipeline.middleware.adaptor import get_fx_topology
from colossalai.legacy.pipeline.pipeline_process_group import ppg
from colossalai.legacy.pipeline.rpc._pipeline_schedule import OneFOneBPipelineEngine
from colossalai.logging import disable_existing_loggers
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
# global variable for model created
batch_size = 16
dim = 10
rpc_is_initialized = _is_current_rpc_agent_set
def create_partition_module(pp_rank: int, stage_num: int, model, data_kwargs):
model.eval()
tracer = ColoTracer()
meta_args = {k: v.to("meta") for k, v in data_kwargs.items()}
graph = tracer.trace(root=model, meta_args=meta_args)
gm = torch.fx.GraphModule(model, graph, model.__class__.__name__)
annotated_model = balanced_split_pass(gm, stage_num)
top_module, split_submodules = split_with_split_nodes_pass(annotated_model, merge_output=True)
topo = get_fx_topology(top_module)
for submodule in split_submodules:
if isinstance(submodule, torch.fx.GraphModule):
setattr(submodule, "_topo", topo)
return split_submodules[pp_rank + 1]
def partition(model, data_kwargs: dict, pp_rank: int, chunk: int, stage_num: int):
torch.manual_seed(1024)
partition = create_partition_module(pp_rank, stage_num, model, data_kwargs)
return partition
def run_master(model_cls, world_size, forward_only):
torch.manual_seed(100)
epoch = 3
device = "cuda"
stage_num = world_size
chunk = 1
num_microbatches = 8
use_checkpoint = "store_true"
if model_cls == MLP:
def data_gen():
x = torch.zeros((batch_size, dim))
kwargs = dict(x=x)
return kwargs
model = model_cls(dim, stage_num * 3)
if forward_only:
labels = None
else:
labels = 1
elif model_cls == DAG_MLP:
def data_gen():
x = torch.zeros((batch_size, dim))
y = torch.zeros((batch_size, dim))
kwargs = dict(x=x, y=y)
return kwargs
model = model_cls(dim, stage_num * 3)
if forward_only:
labels = None
else:
labels = 1
else:
pass
data_kwargs = data_gen()
engine = OneFOneBPipelineEngine(
partition_fn=partial(partition, model, data_kwargs),
stage_num=stage_num,
num_microbatches=num_microbatches,
device=device,
chunk=chunk,
checkpoint=use_checkpoint,
)
if not forward_only:
engine.initialize_optimizer(getattr(torch.optim, "SGD"), lr=1e-3)
for _ in range(epoch):
input_x = torch.randn((batch_size, dim), device=device)
input_y = torch.randn((batch_size, dim), device=device)
logits = engine.forward_backward({"x": input_x, "y": input_y}, labels=labels, forward_only=forward_only)
def run_worker(rank, world_size, port, model_cls, forward_only, master_func):
master_addr = "localhost"
master_port = 29020
os.environ["MASTER_ADDR"] = master_addr
os.environ["MASTER_PORT"] = str(master_port)
disable_existing_loggers()
launch(dict(), rank, world_size, master_addr, master_port, "nccl", verbose=False)
ppg.set_global_info(
rank=rank, world_size=world_size, dp_degree=1, tp_degree=1, num_worker_threads=128, device="cuda"
)
# in rpc mode, only rank 0 is needed to be coded
if rank == 0:
master_func(model_cls, world_size, forward_only)
# barrier here
if rpc_is_initialized():
rpc.shutdown()
@pytest.mark.skip("skip due to CI torch version 1.11")
@parameterize("model_cls", [MLP, DAG_MLP])
@parameterize("forward_only", [True, False])
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_pp_middleware_fwd(model_cls, forward_only):
world_size = 4
master_func = run_master
spawn(
run_worker,
world_size,
model_cls=model_cls,
forward_only=forward_only,
master_func=master_func,
)
if __name__ == "__main__":
test_pp_middleware_fwd()