ColossalAI/tests/test_legacy/test_pipeline/test_cuda_rpc_optimizer.py

84 lines
2.4 KiB
Python

import torch
from rpc_test_utils import RpcTestModel, parse_args, rpc_run
from torch import autograd, nn
from torch.optim import Optimizer
from colossalai.legacy.pipeline.rpc._pipeline_schedule import OneFOneBPipelineEngine
from colossalai.testing import assert_close
# global variable for model created
feat_num = 100
h = 100
def partition(pp_rank: int, chunk: int, stage_num: int):
torch.manual_seed(1024)
partition = RpcTestModel(pp_rank, stage_num, feat_num, h)
return partition
def run_master(args):
torch.manual_seed(100)
device = args.device
stage_num = args.world_size
chunk = args.chunk
actual_stage_num = stage_num * chunk
use_checkpoint = args.use_checkpoint
num_microbatches = args.num_microbatches
optimizer_class = globals()[args.optimizer]
lr = 1e-3
sample_num = 1024
batch_size = 1024
assert sample_num % batch_size == 0
input_sample = torch.randn((sample_num, feat_num), device=device)
engine = OneFOneBPipelineEngine(
partition_fn=partition,
stage_num=stage_num,
num_microbatches=num_microbatches,
device=device,
chunk=chunk,
checkpoint=use_checkpoint,
)
engine.initialize_optimizer(optimizer_class, lr=lr)
_ = engine.forward_backward(input_sample)
cuda_rpc_result = []
single_result = []
actual_stage_num = engine._get_actual_stage_num()
# compute parameters after updating in cuda rpc
parameters = engine.remote_parameters()
for stage_id in range(actual_stage_num):
for p in parameters[stage_id]:
cuda_rpc_result.append(p)
# compute forward result and backward grad of parameters just in rank_0
test_model = nn.Sequential(
*[partition(pp_rank, chunk, actual_stage_num) for pp_rank in range(actual_stage_num)]
).to(device)
optimizer: Optimizer = optimizer_class(test_model.parameters(), lr=lr)
input_sample = input_sample.requires_grad_()
out_val = test_model(input_sample).sum()
autograd.backward(out_val)
optimizer.step()
optimizer.zero_grad()
for p in test_model.parameters():
single_result.append(p)
assert len(cuda_rpc_result) == len(single_result)
for r_c, r_s in zip(cuda_rpc_result, single_result):
assert_close(r_c, r_s, 0.001, 0.001)
if __name__ == "__main__":
args = parse_args()
rpc_run(args, run_master)