ColossalAI/colossalai/inference/quant/gptq/cai_gptq/cai_quant_linear.py

355 lines
15 KiB
Python

# Adapted from AutoGPTQ auto_gptq: https://github.com/PanQiWei/AutoGPTQ
import math
import warnings
from typing import List, Union
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed import ProcessGroup
from colossalai.lazy import LazyInitContext
from colossalai.shardformer.layer import ParallelModule
from .gptq_op import CaiGPTQLinearOp
HAS_GPTQ_CUDA = False
try:
from colossalai.kernel.op_builder.gptq import GPTQBuilder
gptq_cuda = GPTQBuilder().load()
HAS_GPTQ_CUDA = True
except ImportError:
warnings.warn('CUDA gptq is not installed')
HAS_GPTQ_CUDA = False
class CaiQuantLinear(nn.Module):
def __init__(self, bits, groupsize, infeatures, outfeatures, bias, tp_size=1, tp_rank=0, row_split=False):
super().__init__()
if bits not in [2, 4, 8]:
raise NotImplementedError("Only 2,4,8 bits are supported.")
self.infeatures = infeatures
self.outfeatures = outfeatures
self.bits = bits
self.maxq = 2**self.bits - 1
self.groupsize = groupsize if groupsize != -1 else infeatures
self.register_buffer('qweight', torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32))
self.register_buffer(
'qzeros',
torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures // 32 * self.bits), dtype=torch.int32))
self.register_buffer('scales',
torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures), dtype=torch.float16))
if row_split:
self.register_buffer(
'g_idx',
torch.tensor([(i + (tp_rank * self.infeatures)) // self.groupsize for i in range(infeatures)],
dtype=torch.int32))
else:
self.register_buffer('g_idx',
torch.tensor([i // self.groupsize for i in range(infeatures)], dtype=torch.int32))
if bias:
self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16))
else:
self.bias = None
self.gptq_linear = CaiGPTQLinearOp(groupsize, bits)
self.q4 = None
self.empty_tensor = torch.empty((1, 1), device="meta")
self.tp_size = tp_size
self.tp_rank = tp_rank
self.row_split = row_split
def pack(self, linear, scales, zeros, g_idx=None):
g_idx = g_idx.clone() if g_idx is not None else torch.tensor(
[i // self.groupsize for i in range(self.infeatures)], dtype=torch.int32)
scales = scales.t().contiguous()
zeros = zeros.t().contiguous()
scale_zeros = zeros * scales
half_scales = scales.clone().half()
# print("scale shape ", scales.shape, scale_zeros.shape, linear.weight.shape)
self.scales = scales.clone().half()
if linear.bias is not None:
self.bias = linear.bias.clone().half()
wn = 8
pbits = 32
ptype = torch.int32
unsign_type = np.uint32
sign_type = np.int32
intweight = []
for idx in range(self.infeatures):
intweight.append(
torch.round(
(linear.weight.data[:, idx] + scale_zeros[g_idx[idx]]) / half_scales[g_idx[idx]]).to(ptype)[:,
None])
intweight = torch.cat(intweight, dim=1)
intweight = intweight.t().contiguous()
intweight = intweight.numpy().astype(unsign_type)
qweight = np.zeros((intweight.shape[0] // pbits * self.bits, intweight.shape[1]), dtype=unsign_type)
i = 0
row = 0
while row < qweight.shape[0]:
if self.bits in [2, 4, 8]:
for j in range(i, i + (pbits // self.bits)):
qweight[row] |= intweight[j] << (self.bits * (j - i))
i += pbits // self.bits
row += 1
else:
raise NotImplementedError("Only 2,4,8 bits are supported.")
qweight = qweight.astype(sign_type)
qweight1 = torch.from_numpy(qweight)
qweight1 = qweight1.contiguous() #.to("cuda")
self.qweight.data.copy_(qweight1)
qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // pbits * self.bits), dtype=unsign_type)
zeros -= 1
zeros = zeros.numpy().astype(unsign_type)
i = 0
col = 0
while col < qzeros.shape[1]:
if self.bits in [2, 4, 8]:
for j in range(i, i + (pbits // self.bits)):
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
i += pbits // self.bits
col += 1
else:
raise NotImplementedError("Only 2,4,8 bits are supported.")
qzeros = qzeros.astype(sign_type)
qzeros = torch.from_numpy(qzeros)
qzeros = qzeros
self.qzeros.data.copy_(qzeros)
if torch.equal(self.g_idx.to(g_idx.device), g_idx):
self.g_idx = None
else:
self.g_idx = g_idx
def init_q4(self):
assert self.qweight.device.type == "cuda"
self.q4_width = self.qweight.shape[1]
if self.g_idx is not None:
if self.row_split and torch.equal(
self.g_idx,
torch.tensor(
[(i + (self.tp_rank * self.infeatures)) // self.groupsize for i in range(self.infeatures)],
dtype=torch.int32,
device=self.g_idx.device)):
self.g_idx = None
elif torch.equal(
self.g_idx,
torch.tensor([i // self.groupsize for i in range(self.infeatures)],
dtype=torch.int32,
device=self.g_idx.device)):
self.g_idx = None
if self.g_idx is not None:
g_idx = self.g_idx.to("cpu")
else:
g_idx = self.empty_tensor
self.q4 = gptq_cuda.make_q4(self.qweight, self.qzeros, self.scales, g_idx, torch.cuda.current_device())
torch.cuda.synchronize()
def forward(self, x):
outshape = x.shape[:-1] + (self.outfeatures,)
if HAS_GPTQ_CUDA and self.bits == 4:
if self.q4 is None:
self.init_q4()
x = x.view(-1, x.shape[-1])
output = torch.empty((x.shape[0], self.outfeatures), dtype=torch.float16, device=x.device)
gptq_cuda.q4_matmul(x.half(), self.q4, output)
if self.bias is not None and (not self.row_split or self.tp_size == 1):
output.add_(self.bias)
else:
if self.bias is not None and (not self.row_split or self.tp_size == 1):
bias = self.bias
else:
bias = None
output = self.gptq_linear(
x,
self.qweight,
self.scales,
self.qzeros,
g_idx=self.g_idx,
bias=bias,
)
return output.view(outshape)
def split_column_copy(gptq_linear, cai_linear, tp_size=1, tp_rank=0, split_num=1):
qweights = gptq_linear.qweight.split(gptq_linear.out_features // split_num, dim=-1)
qzeros = gptq_linear.qzeros.split(gptq_linear.out_features // (32 // cai_linear.bits) // split_num, dim=-1)
scales = gptq_linear.scales.split(gptq_linear.out_features // split_num, dim=-1)
g_idx = gptq_linear.g_idx
if gptq_linear.bias is not None:
bias = gptq_linear.bias.split(gptq_linear.out_features // split_num, dim=-1)
cai_split_out_features = cai_linear.outfeatures // split_num
zero_split_block = cai_linear.outfeatures // (32 // cai_linear.bits) // split_num
for i in range(split_num):
cai_linear.qweight[:, i * cai_split_out_features:(i + 1) *
cai_split_out_features] = qweights[i][:, tp_rank * cai_split_out_features:(tp_rank + 1) *
cai_split_out_features]
cai_linear.qzeros[:, i * zero_split_block:(i + 1) *
zero_split_block] = qzeros[i][:, tp_rank * zero_split_block:(tp_rank + 1) * zero_split_block]
cai_linear.scales[:, i * cai_split_out_features:(i + 1) *
cai_split_out_features] = scales[i][:, tp_rank * cai_split_out_features:(tp_rank + 1) *
cai_split_out_features]
if cai_linear.bias is not None:
cai_linear.bias[i * cai_split_out_features:(i + 1) *
cai_split_out_features] = bias[i][tp_rank * cai_split_out_features:(tp_rank + 1) *
cai_split_out_features]
cai_linear.g_idx.copy_(g_idx)
def split_row_copy(gptq_linear, cai_linear, tp_rank=0, split_num=1):
qweights = gptq_linear.qweight.split(gptq_linear.in_features // split_num, dim=0)
qzeros = gptq_linear.qzeros.split(gptq_linear.in_features // split_num, dim=0)
scales = gptq_linear.scales.split(gptq_linear.in_features // split_num, dim=0)
g_idxs = gptq_linear.g_idx.split(gptq_linear.in_features // split_num, dim=0)
cai_split_in_features = cai_linear.infeatures // (32 // cai_linear.bits) // split_num
zero_split_block = cai_linear.infeatures // cai_linear.groupsize // split_num
idx_split_features = cai_linear.infeatures // split_num
for i in range(split_num):
cai_linear.qweight[i * cai_split_in_features:(i + 1) *
cai_split_in_features, :] = qweights[i][tp_rank * cai_split_in_features:(tp_rank + 1) *
cai_split_in_features, :]
cai_linear.qzeros[i * zero_split_block:(i + 1) *
zero_split_block, :] = qzeros[i][tp_rank * zero_split_block:(tp_rank + 1) *
zero_split_block, :]
cai_linear.scales[i * zero_split_block:(i + 1) *
zero_split_block, :] = scales[i][tp_rank * zero_split_block:(tp_rank + 1) *
zero_split_block, :]
cai_linear.g_idx[i * idx_split_features:(i + 1) *
idx_split_features] = g_idxs[i][tp_rank * idx_split_features:(tp_rank + 1) *
idx_split_features]
if cai_linear.bias is not None:
cai_linear.bias.copy_(gptq_linear.bias)
class RowCaiQuantLinear(CaiQuantLinear, ParallelModule):
def __init__(self, bits, groupsize, infeatures, outfeatures, bias, tp_size=1, tp_rank=0, row_split=False):
super().__init__(bits,
groupsize,
infeatures,
outfeatures,
bias,
tp_size=tp_size,
tp_rank=tp_rank,
row_split=row_split)
self.process_group = None
@staticmethod
def from_native_module(module: nn.Module, process_group: Union[ProcessGroup, List[ProcessGroup]], *args,
**kwargs) -> ParallelModule:
LazyInitContext.materialize(module)
# get the attributes
in_features = module.in_features
# ensure only one process group is passed
if isinstance(process_group, (list, tuple)):
assert len(process_group) == 1, \
f'Expected only one process group, got {len(process_group)}.'
process_group = process_group[0]
tp_size = dist.get_world_size(process_group)
tp_rank = dist.get_rank(process_group)
if in_features < tp_size:
return module
if in_features % tp_size != 0:
raise ValueError(
f"The size of in_features:{in_features} is not integer multiples of tensor parallel size: {tp_size}!")
linear_1d = RowCaiQuantLinear(module.bits,
module.group_size,
module.in_features // tp_size,
module.out_features,
module.bias is not None,
tp_size=tp_size,
tp_rank=tp_rank,
row_split=True)
linear_1d.process_group = process_group
split_row_copy(module, linear_1d, tp_rank=tp_rank, **kwargs)
return linear_1d
def forward(self, x):
output = super().forward(x)
if self.tp_size > 1:
dist.all_reduce(output, op=dist.ReduceOp.SUM, group=self.process_group)
if self.bias is not None:
output.add_(self.bias)
return output
class ColCaiQuantLinear(CaiQuantLinear, ParallelModule):
def __init__(self, bits, groupsize, infeatures, outfeatures, bias, tp_size=1, tp_rank=0, row_split=False):
super().__init__(bits,
groupsize,
infeatures,
outfeatures,
bias,
tp_size=tp_size,
tp_rank=tp_rank,
row_split=row_split)
self.process_group = None
@staticmethod
def from_native_module(module: nn.Module, process_group: Union[ProcessGroup, List[ProcessGroup]], *args,
**kwargs) -> ParallelModule:
LazyInitContext.materialize(module)
# get the attributes
in_features = module.in_features
# ensure only one process group is passed
if isinstance(process_group, (list, tuple)):
assert len(process_group) == 1, \
f'Expected only one process group, got {len(process_group)}.'
process_group = process_group[0]
tp_size = dist.get_world_size(process_group)
tp_rank = dist.get_rank(process_group)
if in_features < tp_size:
return module
if in_features % tp_size != 0:
raise ValueError(
f"The size of in_features:{in_features} is not integer multiples of tensor parallel size: {tp_size}!")
linear_1d = ColCaiQuantLinear(module.bits,
module.group_size,
module.in_features,
module.out_features // tp_size,
module.bias is not None,
tp_size=tp_size,
tp_rank=tp_rank)
linear_1d.process_group = process_group
split_column_copy(module, linear_1d, tp_rank=tp_rank, **kwargs)
return linear_1d