mirror of https://github.com/hpcaitech/ColossalAI
74 lines
2.6 KiB
Python
74 lines
2.6 KiB
Python
import copy
|
|
import csv
|
|
import os
|
|
from typing import Dict, List
|
|
|
|
from colossalai.logging import DistributedLogger
|
|
|
|
from .base import BaseDataset
|
|
|
|
default_inference_kwargs = {
|
|
"calculate_loss": True,
|
|
"all_classes": ["A", "B", "C", "D"],
|
|
"language": "English",
|
|
"pretrain": False,
|
|
"max_new_tokens": 32,
|
|
}
|
|
|
|
|
|
def get_few_shot_data(data: List[Dict]):
|
|
few_shot_data = []
|
|
for i in data:
|
|
few_shot_data.append(i["input"] + i["target"])
|
|
return few_shot_data
|
|
|
|
|
|
class MMLUDataset(BaseDataset):
|
|
"""
|
|
Dataset class for MMLU dataset.
|
|
Data source: https://github.com/hendrycks/test
|
|
This dataset class will convert the original dataset into the inference dataset.
|
|
"""
|
|
|
|
@staticmethod
|
|
def load(path: str, logger: DistributedLogger, few_shot: bool) -> List[Dict]:
|
|
dataset = {"dev": {}, "test": {}}
|
|
for split in ["dev", "test"]:
|
|
files = os.listdir(os.path.join(path, split))
|
|
files.sort()
|
|
|
|
for file in files:
|
|
subject = file[0 : -len(f"_{split}.csv")].split("_")
|
|
subject = " ".join([word.title() if word != "us" else "US" for word in subject])
|
|
|
|
file_dir = os.path.join(path, split, file)
|
|
|
|
dataset[split][subject] = {"data": [], "inference_kwargs": {}}
|
|
|
|
# It's been tested that each data sample in one subcategory have same inference arguments.
|
|
dataset[split][subject]["inference_kwargs"] = copy.deepcopy(default_inference_kwargs)
|
|
|
|
if split == "test" and few_shot:
|
|
dataset[split][subject]["inference_kwargs"]["few_shot_data"] = get_few_shot_data(
|
|
dataset["dev"][subject]["data"]
|
|
)
|
|
|
|
with open(file_dir, encoding="utf-8") as f:
|
|
reader = csv.reader(f)
|
|
for row in reader:
|
|
assert len(row) == 6
|
|
choices = f"A. {row[1]}\nB. {row[2]}\nC. {row[3]}\nD. {row[4]}"
|
|
data_sample = {
|
|
"dataset": "mmlu",
|
|
"split": split,
|
|
"category": subject,
|
|
"instruction": f"The following is a single-choice question on {subject}. Answer the question by replying A, B, C or D.",
|
|
"input": f"Question: {row[0]}\n{choices}\nAnswer: ",
|
|
"output": "",
|
|
"target": row[5],
|
|
}
|
|
|
|
dataset[split][subject]["data"].append(data_sample)
|
|
|
|
return dataset
|